清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel network core structure extraction algorithm utilized variational autoencoder for community detection

群落结构 自编码 复杂网络 计算机科学 聚类分析 算法 芯(光纤) 相似性(几何) 拓扑(电路) 数据挖掘 人工智能 数学 人工神经网络 电信 组合数学 万维网 图像(数学)
作者
Rong Fei,Yuxin Wan,Bo Hu,Aimin Li,Qian Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:222: 119775-119775 被引量:15
标识
DOI:10.1016/j.eswa.2023.119775
摘要

Community detection technologies have the general research significance in complex networks, in which the topology information of network is worthy to be the focus for its widely application. It is the definition of community structure that the connection of nodes in the community is dense with the connection of nodes outside the community is sparse, which is corresponding to the core structure in the complex real networks is represented by a compact and dense set of connected nodes. While all the notes in the network are considered by the traditional topology, it is hard to extract the core structure with the continuous, exponential growth of community networks. In this paper, a novel network core structure extraction algorithm utilized variational autoencoder for community detection(CSEA) is proposed for finding the community structure more accurately. Firstly, the K-truss algorithm is used to find the core structure information in the network, and the similarity matrix is generated by similarity mapping combined with local information. Secondly, the variational autoencoder is used to extract and reduce the dimension of the similarity matrix containing the core structure of the network, and the low-dimensional feature matrix is obtained. Finally, the K-means clustering algorithm is utilized to obtain the community structure information. We compare CSEA algorithm with 18 different types of community detection algorithms using 4 evaluation metrics on 19 complex real networks. By extensively evaluating our algorithm on large real-world datasets, we show that CSEA algorithm has an excellent community division effect in dense complex real networks, especially in small and medium-sized networks, and it can accurately divide the complex real networks with unknown community structure. Simultaneously, CSEA algorithm also reveals some efficiency advantage in its on-line test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牟翎完成签到,获得积分10
2秒前
6秒前
1437594843完成签到 ,获得积分10
7秒前
尔玉完成签到 ,获得积分10
7秒前
pyq发布了新的文献求助10
9秒前
pyq完成签到,获得积分10
31秒前
负责灵萱完成签到 ,获得积分10
48秒前
NATURECATCHER完成签到,获得积分10
52秒前
瘦瘦的铅笔完成签到 ,获得积分10
53秒前
miracle完成签到 ,获得积分10
1分钟前
Barid完成签到,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
derek完成签到,获得积分10
2分钟前
DKaiJu完成签到,获得积分20
2分钟前
uouuo完成签到 ,获得积分10
2分钟前
Aray完成签到 ,获得积分10
3分钟前
Wang完成签到 ,获得积分20
3分钟前
clhkdyx发布了新的文献求助10
4分钟前
天青色等烟雨完成签到 ,获得积分10
4分钟前
whisper完成签到 ,获得积分10
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
科研通AI5应助clhkdyx采纳,获得10
4分钟前
5分钟前
钱念波发布了新的文献求助10
5分钟前
行云流水完成签到,获得积分10
5分钟前
NexusExplorer应助钱念波采纳,获得10
5分钟前
JF123_完成签到 ,获得积分10
5分钟前
遇上就这样吧应助Cakes采纳,获得10
6分钟前
luying完成签到,获得积分10
6分钟前
huangzsdy完成签到,获得积分10
6分钟前
shann发布了新的文献求助100
6分钟前
6分钟前
钱念波发布了新的文献求助10
6分钟前
6分钟前
6分钟前
clhkdyx发布了新的文献求助10
6分钟前
clhkdyx完成签到,获得积分10
7分钟前
快乐随心完成签到 ,获得积分10
7分钟前
泪流不止完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318369
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679682
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340