Utilization of crowdsourced macroseismic observations to distinguish damaging from harmless earthquakes globally within minutes of an event

概率逻辑 计算机科学 事件(粒子物理) 贝叶斯概率 贝叶斯定理 人工智能 量子力学 物理
作者
Henning Lilienkamp,Rémy Bossu,Fabrice Cotton,Francesco Finazzi,Matthieu Landès,Graeme Weatherill
标识
DOI:10.5194/egusphere-egu23-14699
摘要

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early phase of disaster management, determining the further organization of civil protection measures. In this study, we demonstrate that felt-reports containing macroseismic observations, collected via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to rapidly estimate the probability of a felt earthquake to be “damaging” rather than “harmless” on a global scale. In our fully data-driven, transparent, and reproducible approach, we first map the reported observations to macroseismic intensities according to the EMS-98 macroseismic scale. Subsequently, we compare the distribution of felt-reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “damaging”. For 22% of felt events in 2021, a sufficient number of felt-reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “damaging” and “harmless” events remains a challenging task, correct and unambiguous assessment of a large portion of “harmless” events in our dataset is identified as a key strength of our approach. We consider our method an inexpensive addition to the pool of earthquake impact assessment tools, that can be utilized instantly in all populated areas on the planet. Being fully independent of seismic data, the suggested framework poses an affordable option to potentially improve disaster management in regions that lack expensive seismic instrumentation today and in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助李一一采纳,获得10
1秒前
2秒前
干净的小馒头完成签到 ,获得积分10
2秒前
2秒前
2秒前
搞怪大树完成签到,获得积分10
2秒前
4秒前
4秒前
demo完成签到,获得积分10
4秒前
科研通AI5应助Mininine采纳,获得10
5秒前
小邢完成签到,获得积分20
5秒前
5秒前
开朗的柜子完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
陆柯川完成签到,获得积分10
7秒前
HJJHJH发布了新的文献求助10
8秒前
8秒前
解语花发布了新的文献求助20
8秒前
8秒前
ZZZ好事郑在进行时完成签到,获得积分10
9秒前
bcliu9920完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
tiantian发布了新的文献求助10
10秒前
斯文败类应助HJJHJH采纳,获得10
11秒前
11秒前
11秒前
阿季发布了新的文献求助10
11秒前
林曦发布了新的文献求助10
12秒前
TT发布了新的文献求助10
12秒前
Orange应助西北采纳,获得10
13秒前
JamesPei应助黄黄黄采纳,获得10
13秒前
13秒前
lilia发布了新的文献求助10
13秒前
科研通AI6应助小邢采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384568
求助须知:如何正确求助?哪些是违规求助? 3877805
关于积分的说明 12079791
捐赠科研通 3521208
什么是DOI,文献DOI怎么找? 1932416
邀请新用户注册赠送积分活动 973680
科研通“疑难数据库(出版商)”最低求助积分说明 871863