Class-Aligned and Class-Balancing Generative Domain Adaptation for Hyperspectral Image Classification

高光谱成像 班级(哲学) 计算机科学 人工智能 模式识别(心理学) 上下文图像分类 域适应 适应(眼睛) 图像(数学) 遥感 计算机视觉 地质学 物理 分类器(UML) 光学
作者
Jie Feng,Ziyu Zhou,Ronghua Shang,Jinjian Wu,Tianshu Zhang,Xiangrong Zhang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:31
标识
DOI:10.1109/tgrs.2024.3367765
摘要

The task of hyperspectral image (HSI) classification is fundamental and crucial in HSI processing. Currently, domain adaptive methods have become a research hotspot in HSI classification. However, most domain adaptive methods ignore the class alignment in different domains. Additionally, HSIs have the characteristics of category imbalance and complex spatial-spectral distribution, which restricts the adaptation performance in HSIs. To address these problems, a class-aligned and class-balancing generative domain adaptation (CCGDA) method is proposed for HSI classification. The architecture of CCGDA is designed by using the classifier, domain discriminator, sampler and two weight-sharing generators. In the classifier, split-level capsule network is constructed by extracting rich spatial information of shallow layer and spectral features of deep layer with equivariant characteristic. Then, the classifier provides the pseudo label of samples in the target domain. To prevent the generators from mode collapse caused by category imbalance, the sampler is designed. It samples and re-samples the samples of the target domain in an adaptive proportion according to the statistical calculation through confidence and distribution of pseudo labels. Finally, a novel class-aligned domain adversarial loss is defined to jointly optimize the generators and discriminator. It incorporates the class shift adjusting and adaptive sampling for the samples of the target domain to better adapt the discriminant boundary of the classifier to the target domain. Experiments on benchmark HSI datasets verify the superiority of the proposed method for domain adaptive classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然卷发布了新的文献求助10
刚刚
Cici完成签到,获得积分10
2秒前
Dobrzs完成签到,获得积分10
5秒前
5秒前
6秒前
zchchem应助mzbgnk采纳,获得30
7秒前
丘比特应助不知名的呆毛采纳,获得10
9秒前
9秒前
9秒前
小二郎应助Frank采纳,获得10
10秒前
zyj发布了新的文献求助10
11秒前
Jerry发布了新的文献求助10
11秒前
11秒前
大狒狒发布了新的文献求助30
12秒前
dbr发布了新的文献求助10
12秒前
来日昭昭应助娇气的友易采纳,获得10
15秒前
维时发布了新的文献求助10
15秒前
17秒前
MaRt111n发布了新的文献求助10
17秒前
18秒前
田一点发布了新的文献求助10
21秒前
li关闭了li文献求助
23秒前
大狒狒完成签到,获得积分10
23秒前
23秒前
amy发布了新的文献求助10
24秒前
111完成签到 ,获得积分10
24秒前
龙阔完成签到,获得积分10
25秒前
26秒前
风趣夜云发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
小蘑菇应助Jenny采纳,获得10
30秒前
无敌小牛马完成签到,获得积分10
31秒前
金枪鱼完成签到,获得积分0
31秒前
搜集达人应助sochiyuen采纳,获得10
31秒前
31秒前
科研通AI2S应助飞飞飞采纳,获得10
31秒前
T123456789发布了新的文献求助10
32秒前
sail完成签到,获得积分10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4134919
求助须知:如何正确求助?哪些是违规求助? 3671611
关于积分的说明 11609176
捐赠科研通 3367616
什么是DOI,文献DOI怎么找? 1850049
邀请新用户注册赠送积分活动 913542
科研通“疑难数据库(出版商)”最低求助积分说明 828726