A profile similarity-based personalized federated learning method for wearable sensor-based human activity recognition

相似性(几何) 活动识别 可穿戴计算机 上传 计算机科学 机器学习 人工智能 计算 可穿戴技术 传感器融合 数据挖掘 加速度计 数据建模 数据库 图像(数学) 嵌入式系统 算法 操作系统
作者
Yidong Chai,Haoxin Liu,Hongyi Zhu,Yue Pan,Anqi Zhou,Hongyan Liu,Jianwei Liu,Yang Qian
出处
期刊:Information & Management [Elsevier BV]
卷期号:: 103922-103922 被引量:2
标识
DOI:10.1016/j.im.2024.103922
摘要

Wearable sensor-based human activity recognition (HAR) utilizes artificial intelligence models to analyze real-time data like accelerometer data to recognize daily human activities. While it greatly benefits the life of senior citizens and postoperative patients, it conventionally requires the collected data to be uploaded to a central server to train AI models, raising critical security and privacy concerns. Though Federated learning (FL) emerges as a viable way to cope with these problems, it is confronted by the data heterogeneity problem, where the varying activity patterns of different individuals result in non-identically distributed local data. Some FL models have been proposed to solve the data heterogeneity problem by leveraging the similarity between individuals to create a personalized global model for each individual. However, they are still limited by increased computation or unreliable relationships in the similarity computation. This study proposes a novel profile similarity-based personalized federated learning for wearable sensor-based HAR where the similarity between individuals can be reflected in their profile, such as age, gender, height, and weight. When personalizing a model for an individual, we compute the weighted sum of all clients’ local models, where the weight is determined by the similarity value computed from the profile. In this way, the local models from individuals who have higher similarity values will contribute more towards personalizing a model for a targeted individual than those who are less similar. Experiment results demonstrate that the proposed model outperformed the baseline FL and centralized learning on both RealWorld and SisFall datasets. We also discuss the tradeoff between privacy and personalization and FL's advantages over centralized learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlf完成签到,获得积分10
3秒前
3秒前
小潘完成签到,获得积分10
3秒前
5秒前
wlf发布了新的文献求助10
6秒前
Carlos完成签到,获得积分20
7秒前
Carlos发布了新的文献求助10
9秒前
豆豆发布了新的文献求助10
10秒前
12秒前
14秒前
14秒前
L_online发布了新的文献求助20
16秒前
顾矜应助原子采纳,获得10
17秒前
在路上完成签到 ,获得积分0
17秒前
19秒前
Goahead发布了新的文献求助10
21秒前
科研通AI2S应助wlf采纳,获得10
22秒前
D1fficulty完成签到,获得积分10
25秒前
nature完成签到 ,获得积分10
26秒前
科研通AI5应助冰糖葫芦娃采纳,获得10
31秒前
CyrusSo524应助qianyuan采纳,获得10
31秒前
34秒前
lu周完成签到,获得积分10
34秒前
34秒前
森sen完成签到 ,获得积分10
34秒前
桃井尤川完成签到,获得积分10
35秒前
高高代珊完成签到 ,获得积分10
35秒前
hd完成签到,获得积分10
38秒前
日出发布了新的文献求助10
39秒前
852应助风中的以寒采纳,获得10
41秒前
42秒前
酷波er应助日出采纳,获得10
42秒前
姜姜发布了新的文献求助10
43秒前
WN发布了新的文献求助10
47秒前
昭昭完成签到,获得积分10
48秒前
48秒前
54秒前
头孢西丁完成签到 ,获得积分10
57秒前
1分钟前
没有花活儿完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339