Traffic Improvement in Manhattan Road Networks With the Use of Parallel Hybrid Biobjective Genetic Algorithm

计算机科学 遗传算法 算法 数学优化 机器学习 数学
作者
Акопов Андраник Сумбатович,L. A. Beklaryan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 19532-19552 被引量:22
标识
DOI:10.1109/access.2024.3361399
摘要

There are many reasons for traffic congestions such as the "stop-and-go wave effect", periodic increase in intensity of vehicle and pedestrian traffic ("rush hours"), frequent maneuvering, uncontrolled pedestrians' movement on road crossings and other factors. This paper considers the problem of biobjective optimization and rebalancing of vehicles' and pedestrians' flows with the use of Manhattan road networks (MRNs) with smart traffic lights (STLs) as the case study of intelligent transportation system (ITS). For this purpose, we have studied the possibilities of applying STLs to control of traffic in large-scale road networks providing a speed harmonization and traffic prioritization between vehicles and pedestrians. The considered multiagent system (MAS) includes agent vehicles, agent pedestrians and agent lights that interact with each other according with given rules (e.g., V2V, V2P, V2I). Such STLs use information on the traffic structure and its density to switch signals at each moment in time. In the non-stationary mode with a periodic traffic intensity to provide the analysis of traffic flows done by STLs it has been suggested to use the fuzzy clustering algorithm aggregated with the density-based spatial clustering algorithm (FCA-DBSCAN). At the uniform motion fixed durations of phases set up for STLs that computed individually with use of the suggested parallel hybrid biobjective real-coded genetic algorithm (BORCGA-BOPSO). The approach allows to improve significantly the time-efficiency of seeking optimal individualised STLs' characteristics while keeping up their quality. Moreover, the ITS based on STLs with parameters optimized with the BORCGA-BOPSO provides significant traffic improvement in MRNs in contrast to the case of uncontrolled pedestrian crossings and using usual (i.e., non-smart) traffic lights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
在水一方应助矢思然采纳,获得10
3秒前
3秒前
6秒前
8秒前
冷傲的迎南完成签到 ,获得积分10
10秒前
13秒前
15秒前
Cecilia发布了新的文献求助10
16秒前
17秒前
AAA咸鱼本鱼完成签到,获得积分20
18秒前
唐咩咩咩发布了新的文献求助10
20秒前
矢思然发布了新的文献求助10
20秒前
乐乐应助李李李李李采纳,获得10
20秒前
S1219关注了科研通微信公众号
23秒前
蜻蜓发布了新的文献求助10
24秒前
雪原白鹿发布了新的文献求助10
25秒前
不远完成签到,获得积分10
26秒前
30秒前
唐咩咩咩完成签到,获得积分10
31秒前
36秒前
37秒前
丁莞完成签到,获得积分10
37秒前
38秒前
S1219发布了新的文献求助10
41秒前
ChaoyongWu完成签到 ,获得积分10
42秒前
mmy完成签到 ,获得积分10
43秒前
45秒前
小黄完成签到,获得积分10
46秒前
多情的舞蹈完成签到,获得积分10
48秒前
49秒前
英姑应助mariawang采纳,获得10
50秒前
蜻蜓完成签到,获得积分10
52秒前
52秒前
张张完成签到,获得积分10
54秒前
CipherSage应助科研通管家采纳,获得10
55秒前
领导范儿应助科研通管家采纳,获得10
55秒前
科研通AI5应助科研通管家采纳,获得10
55秒前
上官若男应助科研通管家采纳,获得10
55秒前
爆米花应助科研通管家采纳,获得30
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878