已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust Tool Wear Prediction using Multi-Sensor Fusion and Time-Domain Features for the Milling Process using Instance-based Domain Adaptation

域适应 融合 领域(数学分析) 过程(计算) 时域 计算机科学 适应(眼睛) 传感器融合 刀具磨损 实时计算 人工智能 材料科学 计算机视觉 数学 冶金 物理 机械加工 哲学 数学分析 光学 操作系统 分类器(UML) 语言学
作者
Vivek Warke,Satish Kumar,Arunkumar Bongale,Ketan Kotecha
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:288: 111454-111454 被引量:22
标识
DOI:10.1016/j.knosys.2024.111454
摘要

Tool wear prediction is a significant task in milling, offering several benefits including cost reduction, improved quality, and enhanced productivity. However, predicting a tool wear is challenging due to the inherent uncertainty of the milling process and the types of data that can be used for prediction. Further, limited availability of labeled training data in the target domain makes it challenging to train models precisely and reduces their predictive performance. Thus, present study tackles this issue with a novel TrAdaBoost Regressor (instance-based domain adaptation) approach with real-time machining data. TrAdaBoost leverages information from the labeled source domain to improve predictions in the target domain, effectively utilizing the available labeled data and unlabeled target data. The TrAdaBoost Regressor is the combination of adaptive boosting and instance-weighting for the source and target domain. Hence, it is implemented to optimize predictive performance and enhance generalizability of a model across varying machining parameters. Real-time machining data is acquired and processed through sequence of steps including feature extraction, scaling, and feature selection. The selected features are used for wear prediction with TrAdaBoost Regressor through various base estimators and their performance is evaluated using different evaluation metrics. Thus results shows that, TrAdaBoost Regressor with RFR gives the highest R2 score in the range of 0.989-0.999 during tool wear prediction for the features selected using SFS with RFR. Also, the proposed approach addresses the challenges of covariate shift and data scarcity in tool wear prediction and prove its adaptability during tool wear prediction for new unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孙失策了完成签到 ,获得积分10
刚刚
asdfrfg发布了新的文献求助10
3秒前
4秒前
馆长举报林毓榕求助涉嫌违规
5秒前
Lucas应助yyx采纳,获得10
5秒前
李健的粉丝团团长应助YJ采纳,获得10
6秒前
洁净白容发布了新的文献求助10
6秒前
木木完成签到 ,获得积分10
7秒前
7秒前
星星完成签到 ,获得积分10
8秒前
8秒前
Liskiat2021完成签到,获得积分10
8秒前
orixero应助诚心山芙采纳,获得10
8秒前
12秒前
空得空的空地完成签到,获得积分10
13秒前
今天又学明白了完成签到,获得积分20
13秒前
小菲完成签到 ,获得积分10
14秒前
15秒前
zhangqin发布了新的文献求助10
15秒前
16秒前
shy关闭了shy文献求助
16秒前
GPTea应助科研通管家采纳,获得20
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得30
17秒前
大个应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
打打应助蛋筒采纳,获得10
18秒前
科研通AI5应助顺利的愫采纳,获得10
19秒前
我在祁连山下完成签到 ,获得积分10
20秒前
21秒前
yyx发布了新的文献求助10
21秒前
henry完成签到,获得积分10
22秒前
22秒前
lhhhh完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4740345
求助须知:如何正确求助?哪些是违规求助? 4091191
关于积分的说明 12655693
捐赠科研通 3801003
什么是DOI,文献DOI怎么找? 2098874
邀请新用户注册赠送积分活动 1124299
关于科研通互助平台的介绍 999407