亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Named entity recognition of Traditional Chinese Medicine cases based on RoBERTa-BiLSTM-CRF

计算机科学 人工智能 任务(项目管理) 召回率 中医药 注释 命名实体识别 模式识别(心理学) 自然语言处理 机器学习 医学 病理 经济 管理 替代医学
作者
Qifeng Lou,Shutong Wang,Jiahao Chen,Dongmei Mu,Ying Wang,Lili Huang
标识
DOI:10.1109/bibm58861.2023.10385347
摘要

Named entity recognition of Traditional Chinese Medicine cases plays an important position in TCM text mining. In this research , RoBERTa-BiLSTM-CRF model is constructed to realize the named entity recognition task of TCM cases text. With RoBERTa as the pre-training model, BiLSTM as the feature extractor, and CRF as the sequence annotation, the recognition of six entity named entity types, namely, symptom, tongue diagnosis, pulse diagnosis, prescription, dialectic, and Chinese medicine, is realized by manually annotating the corpus set. After iterative training of the model, the accuracy of the comprehensive experimental results was 96. 24% for accuracy, 83. 51% for precision, 88. 39% for recall, and 85. 88% for F-value; In each classification task, the accuracy rate of symptom was 79. 16%, the accuracy rate of T tongue diagnosis was 64. 59%, the accuracy rate of pulse diagnosis was 61. 83%, the accuracy rate of prescription was 90. 35%, the accuracy rate of dialectic was 77. 94%, and the accuracy rate of Chinese medicine was 98. 02%. Named entity recognition using RoBERTa-BiLSTM-CRF model provides effective support for TCM knowledge discovery, construction of knowledge graphs in TCM field and assisting physicians to utilize the potential application values in Traditional Chinese Medicine cases more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tzj完成签到,获得积分10
4秒前
kw98完成签到 ,获得积分10
12秒前
29秒前
拼搏问薇完成签到 ,获得积分10
31秒前
愉快树叶发布了新的文献求助10
32秒前
55秒前
愉快树叶完成签到,获得积分10
56秒前
晨光完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
binyao2024完成签到,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
drsherlock应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得20
1分钟前
顾矜应助FFFFF采纳,获得10
1分钟前
1分钟前
不吃番茄完成签到 ,获得积分10
1分钟前
充电宝应助FFFFF采纳,获得10
1分钟前
1分钟前
酷波er应助123456采纳,获得10
1分钟前
Ava应助科研打工人采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
123456完成签到,获得积分10
1分钟前
123456发布了新的文献求助10
1分钟前
wdnyrrc发布了新的文献求助10
1分钟前
2分钟前
FFFFF发布了新的文献求助10
2分钟前
asdfqaz完成签到,获得积分10
2分钟前
2分钟前
FFFFF发布了新的文献求助10
2分钟前
氢气完成签到 ,获得积分10
2分钟前
2分钟前
FFFFF发布了新的文献求助10
2分钟前
玖月完成签到 ,获得积分10
2分钟前
Ulrica发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798073
科研通“疑难数据库(出版商)”最低求助积分说明 758215