Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study

髓母细胞瘤 室管膜瘤 无线电技术 医学 磁共振成像 计算机科学 介绍(产科) 放射科 医学物理学 病理
作者
Yasen Yimit,Parhat Yasin,Abudouresuli Tuersun,Jingru Wang,Xiaohong Wang,Chencui Huang,Saimaitikari Abudoubari,Xingzhi Chen,Irshat Ibrahim,Pahatijiang Nijiati,Yunling Wang,Xiaoguang Zou,Mayidili Nijiati
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (8): 3384-3396 被引量:5
标识
DOI:10.1016/j.acra.2024.02.040
摘要

Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set.Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center.31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models.The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
5秒前
5秒前
vn完成签到,获得积分10
6秒前
NexusExplorer应助zcl采纳,获得10
8秒前
毕个业完成签到 ,获得积分10
8秒前
卡他发布了新的文献求助10
9秒前
zhukeqinag发布了新的文献求助10
11秒前
杨艳完成签到 ,获得积分10
12秒前
junio完成签到 ,获得积分10
15秒前
小樊没烦恼完成签到 ,获得积分10
18秒前
小二完成签到,获得积分10
18秒前
无花果应助酷炫的乐枫采纳,获得10
21秒前
失眠的血茗完成签到,获得积分10
25秒前
打打应助卡他采纳,获得10
27秒前
细心可乐完成签到 ,获得积分10
33秒前
36秒前
iNk应助火焰向上采纳,获得10
37秒前
李荣杰发布了新的文献求助10
41秒前
43秒前
彩色映雁完成签到 ,获得积分10
47秒前
云烟成雨发布了新的文献求助10
49秒前
枝江小学生完成签到,获得积分10
50秒前
50秒前
lr完成签到 ,获得积分10
53秒前
54秒前
手抓饼啊发布了新的文献求助30
55秒前
乐乐应助一一一采纳,获得10
55秒前
zqz发布了新的文献求助30
58秒前
1分钟前
chuanzhi完成签到,获得积分10
1分钟前
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
云烟成雨完成签到,获得积分10
1分钟前
诸忆雪发布了新的文献求助10
1分钟前
李荣杰完成签到,获得积分10
1分钟前
星际完成签到,获得积分10
1分钟前
1分钟前
独享发布了新的文献求助10
1分钟前
氯吡格蕾完成签到,获得积分20
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779653
求助须知:如何正确求助?哪些是违规求助? 3325132
关于积分的说明 10221514
捐赠科研通 3040246
什么是DOI,文献DOI怎么找? 1668703
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535