亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mapping large-scale pine wilt disease trees with a lightweight deep-learning model and very high-resolution UAV images

枯萎病 遥感 比例(比率) 高分辨率 计算机科学 深度学习 地图学 环境科学 人工智能 地质学 地理 生物 植物
作者
Zhipan Wang,Su Xu,Xinyan Li,Mingxiang Cai,Xiang Liao
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (8): 2786-2807
标识
DOI:10.1080/01431161.2024.2339192
摘要

Pine wilt disease (PWD), caused by pine wood nematodes, has brought a great loss in ecology and economy all over the world. In China, the forest health status is also significantly affected by PWD since 1980, especially in coniferous forests and mixed forest regions. The PWD spreads very fast and can cause a healthy pine wood tree to die within a very short time. An effective way to protect other healthy pine wood trees is to discover PWD trees early. Using unmanned aerial vehicle (UAV) images can help people discover the PWD tree quickly and accurately, and a few automatical methods have been developed to monitor PWD trees including the deep learning methods. Because of the robust spatial-temporal transferability, deep learning methods have become the mainstream algorithms to monitor PWD trees. As we know, the training dataset is the most important material to train a deep learning model. However, there is still a lack of a PWD segmentation dataset so far. To fill this gap, in this paper, we have generated the first open-sourced PWD segmentation dataset based on very high-resolution UAV images to help the community conduct PWD monitor research conveniently. This dataset has 994 training samples, and each sample has visible bands with 512 × 512 pixels, and the spatial resolution of this dataset is 0.05 m. In order to train an advanced segmentation model, we have designed a lightweight deep-learning model for mobile devices or edge devices in this manuscript, named MobileSeg. The main feature of MobileSeg is its decoupling, which uses the re-parameterization technology to improve the model performance. Finally, a large-scale real-world scenario experiment with very high-resolution UAV images was utilized to validate the performance of MobileSeg, the experiment result indicated that MobileSeg has achieved the best performance compared with the recent lightweight segmentation models, and the experiment also proved the effectiveness of the proposed PWD dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonder123完成签到,获得积分10
1秒前
2秒前
思源应助lting采纳,获得10
5秒前
wonder123发布了新的文献求助20
5秒前
5秒前
小白狗完成签到,获得积分10
7秒前
12秒前
neinei完成签到,获得积分10
13秒前
星流xx完成签到 ,获得积分10
14秒前
VDC发布了新的文献求助10
14秒前
盖福鹤完成签到,获得积分10
17秒前
烨枫晨曦完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
wch666发布了新的文献求助10
19秒前
dolabmu完成签到 ,获得积分10
21秒前
24秒前
柳如烟发布了新的文献求助10
28秒前
虚幻沛菡完成签到 ,获得积分10
29秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得30
31秒前
大模型应助科研通管家采纳,获得10
31秒前
科研通AI5应助HHHHH采纳,获得10
36秒前
孤独如曼完成签到 ,获得积分10
37秒前
柳如烟完成签到,获得积分10
38秒前
壮观的谷冬完成签到 ,获得积分10
41秒前
53秒前
量子星尘发布了新的文献求助10
58秒前
刘辰完成签到 ,获得积分10
1分钟前
子平完成签到 ,获得积分0
1分钟前
1分钟前
nanfang完成签到 ,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
HHHHH发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Qvby3完成签到 ,获得积分10
1分钟前
1分钟前
Ronald完成签到,获得积分10
1分钟前
潇湘完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862379
求助须知:如何正确求助?哪些是违规求助? 3404908
关于积分的说明 10641835
捐赠科研通 3128110
什么是DOI,文献DOI怎么找? 1725135
邀请新用户注册赠送积分活动 830810
科研通“疑难数据库(出版商)”最低求助积分说明 779453