突变体
植物螯合素
拟南芥
镉
液泡
拟南芥
野生型
生物化学
ATP结合盒运输机
分子生物学
运输机
生物
胞浆
原生质体
化学
细胞生物学
谷胱甘肽
基因
细胞质
酶
有机化学
作者
Patrizia Brunetti,Letizia Zanella,Angelo De Paolis,Davide Di Litta,Valentina Cecchetti,Giuseppina Falasca,Maurizio Barbieri,Maria Maddalena Altamura,Paolo Costantino,Maura Cardarelli
摘要
The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC–Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC–Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2.
科研通智能强力驱动
Strongly Powered by AbleSci AI