Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine

风力发电 概率预测 概率逻辑 极限学习机 电力系统 计算机科学 风电预测 发电 可靠性工程 功率(物理) 工程类 机器学习 人工智能 人工神经网络 电气工程 物理 量子力学
作者
Can Wan,Zhao Xu,Pierre Pinson,Dong Zhang,Kit Po Wong
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1033-1044 被引量:573
标识
DOI:10.1109/tpwrs.2013.2287871
摘要

Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrap methods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified with the best performance. Consequently, a new method for prediction intervals formulation based on the ELM and the pairs bootstrap is developed. Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results demonstrate that the proposed method is effective for probabilistic forecasting of wind power generation with a high potential for practical applications in power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助美好醉柳采纳,获得30
4秒前
117完成签到,获得积分20
4秒前
4秒前
coco发布了新的文献求助10
5秒前
牛牛完成签到,获得积分10
6秒前
yang完成签到,获得积分20
6秒前
6秒前
香蕉觅云应助可耐的凌旋采纳,获得10
6秒前
6秒前
Rita应助废废废采纳,获得10
7秒前
阿鑫完成签到 ,获得积分10
8秒前
夏尔酱发布了新的文献求助10
10秒前
10秒前
CNAxiaozhu7应助爱听歌契采纳,获得10
13秒前
Happer完成签到,获得积分10
13秒前
Vresty完成签到,获得积分10
16秒前
科研通AI5应助11采纳,获得10
17秒前
顺利莛发布了新的文献求助10
18秒前
帅气学姐完成签到,获得积分10
21秒前
22秒前
23秒前
隐形曼青应助灵巧的傲柏采纳,获得10
24秒前
25秒前
27秒前
隐形曼青应助vidgers采纳,获得10
27秒前
29秒前
小熊猫发布了新的文献求助10
29秒前
李爱国应助夏尔酱采纳,获得10
30秒前
BZPL完成签到,获得积分10
30秒前
互助棍哥完成签到,获得积分10
31秒前
Iaint完成签到,获得积分10
32秒前
11发布了新的文献求助10
35秒前
xiaoseven关注了科研通微信公众号
38秒前
星辰大海应助泡沫采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得30
39秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
深情安青应助科研通管家采纳,获得30
39秒前
Orange应助科研通管家采纳,获得10
39秒前
shisui应助科研通管家采纳,获得30
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800330
求助须知:如何正确求助?哪些是违规求助? 3345625
关于积分的说明 10326061
捐赠科研通 3062064
什么是DOI,文献DOI怎么找? 1680781
邀请新用户注册赠送积分活动 807242
科研通“疑难数据库(出版商)”最低求助积分说明 763557