Classification of Hepatotoxicants Using HepG2 Cells: A Proof of Principle Study

毒理基因组学 药品 肝损伤 转录组 计算生物学 微阵列分析技术 胆汁淤积 DNA微阵列 药物代谢 集合(抽象数据类型) 基因 生物 药理学 计算机科学 基因表达 生物化学 内分泌学 程序设计语言
作者
Wim F.P.M. Van den Hof,Maarten Coonen,Marcel van Herwijnen,Karen Brauers,Will K. W. H. Wodzig,Joost H.M. van Delft,Jos Kleinjans
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:27 (3): 433-442 被引量:65
标识
DOI:10.1021/tx4004165
摘要

With the number of new drug candidates increasing every year, there is a need for high-throughput human toxicity screenings. As the liver is the most important organ in drug metabolism and thus capable of generating relatively high levels of toxic metabolites, it is important to find a reliable strategy to screen for drug-induced hepatotoxicity. Microarray-based transcriptomics is a well-established technique in toxicogenomics research and is an ideal approach to screen for drug-induced injury at an early stage. The aim of this study was to prove the principle of classifying known hepatotoxicants and nonhepatotoxicants using their distinctive gene expression profiles in vitro in HepG2 cells. Furthermore, we undertook to subclassify the hepatotoxic compounds by investigating the subclass of cholestatic compounds. Prediction analysis for microarrays was used for classification of hepatotoxicants and nonhepatotoxicants, which resulted in an accuracy of 92% on the training set and 91% on the validation set, using 36 genes. A second model was set up with the goal of finding classifiers for cholestasis, resulting in 12 genes that appeared capable of correctly classifying 8 of the 9 cholestatic compounds, resulting in an accuracy of 93%. We were able to prove the principle that transcriptomic analyses of HepG2 cells can indeed be used to classify chemical entities for hepatotoxicity. Genes selected for classification of hepatotoxicity and cholestasis indicate that endoplasmic reticulum stress and the unfolded protein response may be important cellular effects of drug-induced liver injury. However, the number of compounds in both the training set and the validation set should be increased to improve the reliability of the prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉完成签到,获得积分20
11秒前
好运莲莲完成签到,获得积分10
12秒前
13秒前
固的曼发布了新的文献求助80
13秒前
羊羊羊完成签到,获得积分20
15秒前
考古学家米勒完成签到,获得积分10
15秒前
李爱国应助小璐璐呀采纳,获得10
15秒前
独特的忆彤完成签到 ,获得积分10
16秒前
hyhyhyhy发布了新的文献求助10
17秒前
非而者厚应助淡定水杯采纳,获得10
20秒前
24秒前
26秒前
26秒前
ZoeyD完成签到 ,获得积分10
27秒前
duan完成签到 ,获得积分10
28秒前
小璐璐呀发布了新的文献求助10
28秒前
2041完成签到,获得积分10
29秒前
科研通AI5应助粗暴的大门采纳,获得10
30秒前
30秒前
舒适的素发布了新的文献求助10
32秒前
CATH发布了新的文献求助10
36秒前
37秒前
38秒前
40秒前
ranjeah完成签到 ,获得积分10
42秒前
44秒前
ycccccc完成签到 ,获得积分10
48秒前
49秒前
欢呼的傲旋完成签到,获得积分10
53秒前
户户得振完成签到,获得积分10
54秒前
pluto应助烟雨醉巷采纳,获得10
54秒前
现代凝安发布了新的文献求助10
55秒前
wanci应助维恰采纳,获得10
59秒前
共享精神应助liujingyi采纳,获得10
59秒前
1分钟前
1分钟前
嘟嘟嘟发布了新的文献求助10
1分钟前
syh发布了新的文献求助20
1分钟前
脑洞疼应助嘟嘟嘟采纳,获得10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783222
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10236984
捐赠科研通 3043669
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126