Application of big data analytics for automated estimation of CT image quality

计算机科学 人工智能 卷积神经网络 像素 数据集 图像质量 模式识别(心理学) 图像分割 分割 图像处理 计算机视觉 图像(数学)
作者
Maitham D Naeemi,Johnny Ren,Nathan Hollcroft,Adam Alessio,Sohini Roychowdhury
标识
DOI:10.1109/bigdata.2016.7841003
摘要

With the increasing applications of Big Data analytics in medical image processing systems, there has been a growing need for quantitative medical image quality assessment techniques. Specifically for computed tomography (CT) images, quantitative image assessment can allow for benchmarking image processing methods and optimization of image acquisition parameters. In this work, large volumes of CT images from phantoms and patients are analyzed using 3 data models that vary in their implementation time complexities. The goal here is to identify the optimal method that scales across data set variabilities for predictive modeling of CT image quality (CTIQ). The first two models rely on spatial segmentation of regions-of-interest (ROIs) and estimate CTIQs in terms of segmented pixel variabilities. The third, convolutional neural network (CNN) model relies on error back-propagation from the training set of images to learn the regions indicative of CTIQ. We observe that for 70/30 data split, the average multi-class classification accuracies for CTIQ prediction using the 3 data models range from 73.6-100% and 50-100% for the phantom and patient CT images, respectively. Using variance of pixels within the segmented ROIs as a CTIQ classification parameter, the spatial segmentation data models are found to be more generalizable that the CNN model. However, the CNN model is found to be more suitable for CT image texture classification in the absence of structural variabilities. Our analysis demonstrates that spatial ROI segmentation data models are consistent CTIQ estimators while the CNN models are consistent identifiers of structural similarities for CT image data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小铃铛发布了新的文献求助10
1秒前
脑洞疼应助小Z采纳,获得30
1秒前
XIU发布了新的文献求助10
1秒前
CuO关闭了CuO文献求助
1秒前
熊健钧发布了新的文献求助10
1秒前
fufu完成签到,获得积分10
2秒前
3秒前
黎音完成签到 ,获得积分10
3秒前
3秒前
泯珉发布了新的文献求助30
3秒前
4秒前
able完成签到,获得积分10
5秒前
5秒前
5秒前
孙兴燕完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助50
5秒前
bkagyin应助神秘猎牛人采纳,获得10
5秒前
李健应助小铃铛采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
爆米花应助好了没了采纳,获得10
8秒前
8秒前
8秒前
Ann完成签到,获得积分10
9秒前
幸福大白发布了新的文献求助30
9秒前
Ava应助骓kong采纳,获得10
9秒前
BTQ发布了新的文献求助10
9秒前
十一完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
鲤跃发布了新的文献求助10
11秒前
11秒前
Npccc完成签到,获得积分10
12秒前
slingiejf完成签到,获得积分10
12秒前
12秒前
Srishti发布了新的文献求助10
12秒前
忆年慧逝发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4665285
求助须知:如何正确求助?哪些是违规求助? 4046457
关于积分的说明 12515896
捐赠科研通 3738986
什么是DOI,文献DOI怎么找? 2064970
邀请新用户注册赠送积分活动 1094476
科研通“疑难数据库(出版商)”最低求助积分说明 974883