On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries

材料科学 微观结构 电解质 X射线光电子能谱 阳极 电池(电) 复合数 锂离子电池 锂(药物) 涂层 阴极 化学工程 复合材料 碳纤维 电极 化学 物理化学 功率(物理) 内分泌学 工程类 物理 医学 量子力学
作者
Simon Randau,Felix Walther,Anton Neumann,Yannik Schneider,Rajendra Singh Negi,Boris Mogwitz,Joachim Sann,Katharina Becker-Steinberger,Timo Danner,Simon Hein,Arnulf Latz,Felix H. Richter,Jürgen Janek
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:33 (4): 1380-1393 被引量:64
标识
DOI:10.1021/acs.chemmater.0c04454
摘要

All-solid-state batteries promise to enable lithium metal anodes and outperform state-of-the-art lithium-ion battery technology. To achieve high battery capacity, utilization of the active material in the cathode must be maximized. Carbon-based conductive additives are known to improve the capacity and rate performance of electrode composites. However, their influence on cathode composites in all-solid-state batteries is yet not fully understood. Here, we study the influence of several carbon additives with different morphologies and surface areas on the performance of an all-solid-state battery cell Li|β-Li3PS4|Li(Ni0.6Co0.2Mn0.2)O2/β-Li3PS4/carbon. Cycling tests and microstructure-resolved simulations show that higher utilization of the cathode active material can be achieved using fiber-shaped vapor-grown carbon additives, whereas particle-shaped carbons show a minor influence. Unfortunately, carbon additives generally lead to an accelerated capacity loss during cycling and an enhanced formation of solid electrolyte decomposition products. The latter was studied in more detail using cyclic voltammetry, X-ray photoelectron spectroscopy, and cycling experiments. The results show that carbon additives with a small surface area and a fiber-like morphology result in the lowest degree of decomposition. To completely overcome electrolyte degradation caused by the use of carbon additives, a protection concept is developed. A thin alumina coating with a few nanometers thickness was deposited on the carbon fibers by atomic layer deposition, which successfully prevents decomposition reactions, reduces long-term capacity fading, and leads to an enhanced overall all-solid-state battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiang发布了新的文献求助10
1秒前
hhh发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
4秒前
星辰大海应助郑晓漫采纳,获得10
4秒前
刘雪静完成签到 ,获得积分10
4秒前
cd完成签到,获得积分10
4秒前
zhuhua发布了新的文献求助10
6秒前
11秒前
含蓄尔竹完成签到,获得积分10
11秒前
王博士完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
13秒前
14秒前
郑晓漫完成签到,获得积分10
15秒前
幸福幻灵发布了新的文献求助10
15秒前
15秒前
酥酥完成签到,获得积分10
18秒前
LXZ发布了新的文献求助10
19秒前
19秒前
优雅的雁凡完成签到,获得积分10
19秒前
ygg应助科研通管家采纳,获得10
20秒前
乐观小之应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
Luoyan2012应助科研通管家采纳,获得30
20秒前
乐观小之应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
HZQ应助科研通管家采纳,获得50
21秒前
Joshua应助科研通管家采纳,获得20
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
可爱的函函应助jiang采纳,获得10
21秒前
雪雪发布了新的文献求助10
21秒前
166发布了新的文献求助10
23秒前
丘比特应助LXZ采纳,获得10
25秒前
酥酥发布了新的文献求助10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4220768
求助须知:如何正确求助?哪些是违规求助? 3754351
关于积分的说明 11804062
捐赠科研通 3418029
什么是DOI,文献DOI怎么找? 1875975
邀请新用户注册赠送积分活动 929582
科研通“疑难数据库(出版商)”最低求助积分说明 838159