CommDGI

计算机科学 最大熵 可解释性 人工智能 聚类分析 人工神经网络 特征学习 半监督学习 邻接矩阵 图形 理论计算机科学 机器学习 计算机网络 盲信号分离 频道(广播)
作者
Tianqi Zhang,Yun Xiong,Jiawei Zhang,Yao Zhang,Yizhu Jiao,Yangyong Zhu
出处
期刊:Conference on Information and Knowledge Management 被引量:42
标识
DOI:10.1145/3340531.3412042
摘要

Graph Neural Networks(GNNs), like GCN and GAT, have achieved great success in a number of supervised or semi-supervised tasks including node classification and link prediction. These existing graph neural networks can effectively encode neighborhood information of graph nodes through their message aggregating mechanisms. However, there are some unsupervised and structure-related tasks like community detection, which is a fundamental problem in network analysis that finds densely-connected groups of nodes and separates them from others in graphs. It is still difficult for these general-purposed GNNs to learn the needed structural information in these particular problems. To overcome the shortcomings of general-purposed graph representation learning methods, we propose the Community Deep Graph Infomax (CommDGI), a graph neural network designed to handle community detection problems. Inspired by the success of deep graph infomax in self-supervised graph learning, we design a novel mutual information mechanism to capture neighborhood as well as community information in graphs. A trainable clustering layer is employed to learn the community partition in an end-to-end manner. Disentangled representation learning is applied in our graph neural network so that the model can improve interpretability and generalization. Throughout the whole learning process, joint optimization is applied to learn the community-related node representations. The experimental results show that our algorithm outperforms state-of-the-art community detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不过尔尔完成签到 ,获得积分10
1秒前
LiangRen完成签到 ,获得积分10
1秒前
闻屿完成签到,获得积分10
1秒前
cdercder应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
笑林完成签到 ,获得积分10
10秒前
CLTTTt完成签到,获得积分10
19秒前
20秒前
TTTHANKS完成签到 ,获得积分10
24秒前
手握灵珠常奋笔完成签到,获得积分10
26秒前
余味应助滕皓轩采纳,获得10
30秒前
虚幻元风完成签到 ,获得积分10
32秒前
我爱学习完成签到,获得积分10
37秒前
优雅的雁凡完成签到,获得积分10
38秒前
46秒前
eternal_dreams完成签到 ,获得积分10
48秒前
zw完成签到,获得积分10
49秒前
49秒前
笑点低的孤丹完成签到 ,获得积分10
52秒前
hover发布了新的文献求助10
53秒前
体贴的叛逆者完成签到,获得积分10
56秒前
yingw驳回了Ava应助
57秒前
jason完成签到 ,获得积分10
1分钟前
MYMELODY完成签到,获得积分10
1分钟前
彭彭蓬完成签到 ,获得积分20
1分钟前
科研通AI5应助盈盈采纳,获得30
1分钟前
兴奋小丸子完成签到,获得积分10
1分钟前
依依完成签到,获得积分10
1分钟前
米博士完成签到,获得积分10
1分钟前
梓唯忧完成签到 ,获得积分10
1分钟前
czzlancer完成签到,获得积分10
1分钟前
伶俐的语雪完成签到,获得积分10
1分钟前
材1完成签到 ,获得积分10
1分钟前
1分钟前
momo发布了新的文献求助10
1分钟前
Lucas应助momo采纳,获得10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
青牛完成签到,获得积分10
1分钟前
呆萌芙蓉完成签到 ,获得积分10
1分钟前
兰瓜瓜完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060649
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353