Deep learning for in vitro prediction of pharmaceutical formulations

药剂学 人工智能 深度学习 机器学习 计算机科学 人工神经网络 药学 数据挖掘 药理学 医学
作者
Yilong Yang,Zhuyifan Ye,Yan Su,Qianqian Zhao,Xiaoshan Li,Defang Ouyang
出处
期刊:Acta Pharmaceutica Sinica B [Elsevier BV]
卷期号:9 (1): 177-185 被引量:139
标识
DOI:10.1016/j.apsb.2018.09.010
摘要

Current pharmaceutical formulation development still strongly relies on the traditional trial-and-error methods of pharmaceutical scientists. This approach is laborious, time-consuming and costly. Recently, deep learning has been widely applied in many challenging domains because of its important capability of automatic feature extraction. The aim of the present research is to apply deep learning methods to predict pharmaceutical formulations. In this paper, two types of dosage forms were chosen as model systems. Evaluation criteria suitable for pharmaceutics were applied to assess the performance of the models. Moreover, an automatic dataset selection algorithm was developed for selecting the representative data as validation and test datasets. Six machine learning methods were compared with deep learning. Results showed that the accuracies of both two deep neural networks were above 80% and higher than other machine learning models; the latter showed good prediction of pharmaceutical formulations. In summary, deep learning employing an automatic data splitting algorithm and the evaluation criteria suitable for pharmaceutical formulation data was developed for the prediction of pharmaceutical formulations for the first time. The cross-disciplinary integration of pharmaceutics and artificial intelligence may shift the paradigm of pharmaceutical research from experience-dependent studies to data-driven methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noah完成签到 ,获得积分0
1秒前
温暖的白昼完成签到,获得积分10
2秒前
罗备完成签到,获得积分10
2秒前
horace完成签到,获得积分10
4秒前
情怀应助禾禾采纳,获得10
5秒前
子慕i完成签到,获得积分10
7秒前
8秒前
9秒前
Sunsets完成签到 ,获得积分10
10秒前
好好学习发布了新的文献求助30
10秒前
平常柔发布了新的文献求助10
10秒前
大个应助石中酒采纳,获得10
11秒前
开朗的踏歌完成签到,获得积分10
13秒前
14秒前
14秒前
晨晓完成签到,获得积分10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
16秒前
orixero应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
猫猫完成签到,获得积分10
17秒前
18秒前
猫猫发布了新的文献求助10
20秒前
21秒前
22秒前
赘婿应助石中酒采纳,获得10
22秒前
mei发布了新的文献求助10
22秒前
23秒前
Forever完成签到,获得积分10
24秒前
Zhao_Kai完成签到,获得积分10
24秒前
27秒前
独特念文发布了新的文献求助200
28秒前
今后应助细心蚂蚁采纳,获得30
29秒前
29秒前
supreme辉发布了新的文献求助10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176270
求助须知:如何正确求助?哪些是违规求助? 3711538
关于积分的说明 11704868
捐赠科研通 3394499
什么是DOI,文献DOI怎么找? 1862389
邀请新用户注册赠送积分活动 921126
科研通“疑难数据库(出版商)”最低求助积分说明 833014