多光谱图像
行人检测
人工智能
计算机科学
保险丝(电气)
特征(语言学)
RGB颜色模型
计算机视觉
目标检测
模式识别(心理学)
行人
图像融合
图像(数学)
工程类
哲学
电气工程
语言学
运输工程
作者
Heng Zhang,Élisa Fromont,Sébastien Lefèvre,Bruno Avignon
标识
DOI:10.1109/wacv48630.2021.00012
摘要
Multispectral image pairs can provide complementary visual information, making pedestrian detection systems more robust and reliable. To benefit from both RGB and thermal IR modalities, we introduce a novel attentive multispectral feature fusion approach. Under the guidance of the inter- and intra-modality attention modules, our deep learning architecture learns to dynamically weigh and fuse the multispectral features. Experiments on two public multi-spectral object detection datasets demonstrate that the proposed approach significantly improves the detection accuracy at a low computation cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI