亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Curriculum learning for improved femur fracture classification: Scheduling data with prior knowledge and uncertainty

计算机科学 人工智能 卷积神经网络 机器学习 课程 加权 班级(哲学) 模式识别(心理学) 数据挖掘 医学 心理学 教育学 放射科
作者
Amelia Jiménez-Sánchez,Diana Mateus,Sonja Kirchhoff,Chlodwig Kirchhoff,Peter Biberthaler,Nassir Navab,Miguel Á. González Ballester,Gemma Piella
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102273-102273 被引量:20
标识
DOI:10.1016/j.media.2021.102273
摘要

Abstract An adequate classification of proximal femur fractures from X-ray images is crucial for the treatment choice and the patients’ clinical outcome. We rely on the commonly used AO system, which describes a hierarchical knowledge tree classifying the images into types and subtypes according to the fracture’s location and complexity. In this paper, we propose a method for the automatic classification of proximal femur fractures into 3 and 7 AO classes based on a Convolutional Neural Network (CNN). As it is known, CNNs need large and representative datasets with reliable labels, which are hard to collect for the application at hand. In this paper, we design a curriculum learning (CL) approach that improves over the basic CNNs performance under such conditions. Our novel formulation reunites three curriculum strategies: individually weighting training samples, reordering the training set, and sampling subsets of data. The core of these strategies is a scoring function ranking the training samples. We define two novel scoring functions: one from domain-specific prior knowledge and an original self-paced uncertainty score. We perform experiments on a clinical dataset of proximal femur radiographs. The curriculum improves proximal femur fracture classification up to the performance of experienced trauma surgeons. The best curriculum method reorders the training set based on prior knowledge resulting into a classification improvement of 15%. Using the publicly available MNIST dataset, we further discuss and demonstrate the benefits of our unified CL formulation for three controlled and challenging digit recognition scenarios: with limited amounts of data, under class-imbalance, and in the presence of label noise. The code of our work is available at: https://github.com/ameliajimenez/curriculum-learning-prior-uncertainty .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poki完成签到 ,获得积分10
刚刚
11秒前
22秒前
Mei应助冷静大米采纳,获得10
35秒前
41秒前
量子星尘发布了新的文献求助10
49秒前
55秒前
1分钟前
1分钟前
FashionBoy应助oleskarabach采纳,获得10
1分钟前
1分钟前
1分钟前
某某某完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Mei完成签到,获得积分10
3分钟前
3分钟前
香蕉觅云应助哈哈哈采纳,获得10
3分钟前
3分钟前
冷静大米完成签到,获得积分10
3分钟前
3分钟前
冷静大米发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
顺心蜜粉应助紧张的书本采纳,获得10
4分钟前
今后应助echo采纳,获得10
4分钟前
立夏完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
lixuebin完成签到 ,获得积分10
6分钟前
gavin完成签到 ,获得积分10
6分钟前
腐竹完成签到,获得积分10
6分钟前
6分钟前
大气建辉完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204801
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629