已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

医学实验室 范围(计算机科学) 数字化 计算机科学 医疗保健 最佳实践 临床实习 精密医学 人工智能 数据科学 医学 病理 经济 管理 程序设计语言 家庭医学 经济增长 计算机视觉
作者
Daniel S. Herman,Daniel D. Rhoads,Wade Schulz,Thomas J S Durant
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:67 (11): 1466-1482 被引量:15
标识
DOI:10.1093/clinchem/hvab165
摘要

Abstract Background Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. Content In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. Summary AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木子完成签到 ,获得积分10
2秒前
Mona发布了新的文献求助10
2秒前
永毅发布了新的文献求助10
3秒前
zho关闭了zho文献求助
4秒前
深情安青应助微笑子慧采纳,获得10
4秒前
6秒前
cherry完成签到,获得积分10
7秒前
9秒前
zho关闭了zho文献求助
9秒前
13秒前
junkook完成签到 ,获得积分10
13秒前
candy teen完成签到,获得积分10
14秒前
zho关闭了zho文献求助
14秒前
15秒前
活泼芷雪发布了新的文献求助10
17秒前
WizBLue完成签到,获得积分10
17秒前
Talha发布了新的文献求助10
18秒前
曲蔚然完成签到 ,获得积分10
18秒前
zho关闭了zho文献求助
19秒前
psyche完成签到,获得积分10
20秒前
疯狂的沛蓝完成签到 ,获得积分10
20秒前
多摩川的烟花少年完成签到,获得积分10
21秒前
zho关闭了zho文献求助
23秒前
24秒前
邓娅琴完成签到 ,获得积分10
24秒前
AU完成签到 ,获得积分10
24秒前
周周粥完成签到 ,获得积分10
25秒前
25秒前
Talha发布了新的文献求助10
29秒前
欢喜发布了新的文献求助10
30秒前
春天的粥完成签到 ,获得积分10
31秒前
31秒前
zho关闭了zho文献求助
34秒前
cwy完成签到,获得积分10
35秒前
Jonathan完成签到,获得积分10
37秒前
Talha完成签到,获得积分10
38秒前
小文子完成签到 ,获得积分10
39秒前
葡萄味的果茶完成签到 ,获得积分10
40秒前
欢喜完成签到,获得积分10
41秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352628
关于积分的说明 10359846
捐赠科研通 3068627
什么是DOI,文献DOI怎么找? 1685118
邀请新用户注册赠送积分活动 810324
科研通“疑难数据库(出版商)”最低求助积分说明 766013