CMT: Convolutional Neural Networks Meet Vision Transformers

变压器 卷积神经网络 计算机科学 失败 人工智能 人工神经网络 机器学习 模式识别(心理学) 并行计算 电压 工程类 电气工程
作者
Jianyuan Guo,Kai Han,Han Wu,Chang Xu,Yehui Tang,Chunjing Xu,Yunhe Wang
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2107.06263
摘要

Vision transformers have been successfully applied to image recognition tasks due to their ability to capture long-range dependencies within an image. However, there are still gaps in both performance and computational cost between transformers and existing convolutional neural networks (CNNs). In this paper, we aim to address this issue and develop a network that can outperform not only the canonical transformers, but also the high-performance convolutional models. We propose a new transformer based hybrid network by taking advantage of transformers to capture long-range dependencies, and of CNNs to model local features. Furthermore, we scale it to obtain a family of models, called CMTs, obtaining much better accuracy and efficiency than previous convolution and transformer based models. In particular, our CMT-S achieves 83.5% top-1 accuracy on ImageNet, while being 14x and 2x smaller on FLOPs than the existing DeiT and EfficientNet, respectively. The proposed CMT-S also generalizes well on CIFAR10 (99.2%), CIFAR100 (91.7%), Flowers (98.7%), and other challenging vision datasets such as COCO (44.3% mAP), with considerably less computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rubo发布了新的文献求助10
1秒前
小王关注了科研通微信公众号
1秒前
2秒前
科目三应助俏皮梦桃采纳,获得10
4秒前
SYLH应助日常常采纳,获得20
4秒前
bendanzxx发布了新的文献求助10
4秒前
min发布了新的文献求助10
5秒前
顾矜应助张资阳采纳,获得10
7秒前
7秒前
老金金完成签到 ,获得积分10
7秒前
7秒前
7秒前
9秒前
wangsenyu发布了新的文献求助20
10秒前
阳和启蛰发布了新的文献求助10
11秒前
英俊的铭应助min采纳,获得10
11秒前
12秒前
yshq完成签到,获得积分10
14秒前
aa完成签到,获得积分20
17秒前
NexusExplorer应助椰果采纳,获得10
18秒前
18秒前
shufessm完成签到,获得积分0
19秒前
搜集达人应助盈盈采纳,获得10
20秒前
虚拟的以南完成签到,获得积分10
21秒前
能干谷梦完成签到 ,获得积分10
22秒前
23秒前
雨中尘埃发布了新的文献求助10
23秒前
24秒前
Jasper应助大脚采纳,获得10
24秒前
OmmeHabiba完成签到,获得积分10
25秒前
情怀应助lxz采纳,获得10
28秒前
科研通AI5应助小熊采纳,获得10
29秒前
清爽海白发布了新的文献求助10
29秒前
skmksd完成签到,获得积分10
29秒前
29秒前
31秒前
柚子发布了新的文献求助10
35秒前
大脚发布了新的文献求助10
36秒前
36秒前
wangsenyu完成签到,获得积分10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797577
求助须知:如何正确求助?哪些是违规求助? 3342959
关于积分的说明 10314242
捐赠科研通 3059647
什么是DOI,文献DOI怎么找? 1679045
邀请新用户注册赠送积分活动 806307
科研通“疑难数据库(出版商)”最低求助积分说明 763093