Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻梦之完成签到 ,获得积分10
刚刚
SuperD完成签到,获得积分10
刚刚
Candy发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
3秒前
4秒前
橙子发布了新的文献求助20
4秒前
猫捡球完成签到,获得积分10
4秒前
5秒前
5秒前
沉默傲薇发布了新的文献求助10
6秒前
6秒前
yixi发布了新的文献求助10
8秒前
shimly0101xx完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
yayika完成签到 ,获得积分10
11秒前
吕别皱眉啊完成签到,获得积分10
11秒前
wujingshuai完成签到,获得积分10
13秒前
14秒前
神奇科研圆完成签到,获得积分10
15秒前
15秒前
黄浦江发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
zhszy525发布了新的文献求助30
16秒前
大方尔安发布了新的文献求助10
16秒前
慕青应助yixi采纳,获得10
17秒前
tachikoma完成签到 ,获得积分10
17秒前
箱箱完成签到,获得积分10
18秒前
隐形曼青应助haha采纳,获得10
18秒前
YaoHui发布了新的文献求助40
20秒前
专注鼠标完成签到,获得积分10
21秒前
自由寒云完成签到,获得积分10
22秒前
23秒前
华仔应助wtt采纳,获得10
23秒前
Lin发布了新的文献求助10
24秒前
丘比特应助黄浦江采纳,获得10
24秒前
大方尔安完成签到,获得积分20
24秒前
25秒前
李健应助cruise采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586255
求助须知:如何正确求助?哪些是违规求助? 4002782
关于积分的说明 12391137
捐赠科研通 3678896
什么是DOI,文献DOI怎么找? 2027733
邀请新用户注册赠送积分活动 1061200
科研通“疑难数据库(出版商)”最低求助积分说明 947546