Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQY完成签到 ,获得积分10
刚刚
斯文败类应助正直亦旋采纳,获得10
2秒前
科研通AI5应助jijahui采纳,获得80
3秒前
Jenny应助背后的诺言采纳,获得10
3秒前
木木完成签到,获得积分10
3秒前
赤邪发布了新的文献求助10
3秒前
3秒前
keen完成签到 ,获得积分10
3秒前
et完成签到,获得积分10
4秒前
桂魄完成签到,获得积分10
4秒前
4秒前
5秒前
wang发布了新的文献求助200
6秒前
6秒前
6秒前
英姑应助snowdrift采纳,获得10
6秒前
6秒前
6秒前
jy完成签到 ,获得积分10
6秒前
NexusExplorer应助立马毕业采纳,获得10
7秒前
在水一方应助123采纳,获得10
8秒前
科目三应助白华苍松采纳,获得10
9秒前
通~发布了新的文献求助10
9秒前
CipherSage应助千幻采纳,获得10
9秒前
9秒前
dddddd完成签到,获得积分10
9秒前
桂魄发布了新的文献求助10
9秒前
年轻的咖啡豆完成签到,获得积分20
10秒前
10秒前
绿洲发布了新的文献求助10
10秒前
10秒前
11秒前
aDou完成签到 ,获得积分10
11秒前
脑洞疼应助bc采纳,获得10
11秒前
NEMO发布了新的文献求助10
11秒前
李健应助mammoth采纳,获得20
11秒前
熊boy发布了新的文献求助10
11秒前
天真思雁发布了新的文献求助10
11秒前
12秒前
情怀应助蔡蔡不菜菜采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762