Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖虎发布了新的文献求助10
刚刚
黄宏旭完成签到,获得积分10
刚刚
RCBird完成签到,获得积分10
刚刚
MaruzenGroove发布了新的文献求助10
刚刚
欢呼的巧蕊完成签到,获得积分20
1秒前
FashionBoy应助陈秀娟采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Cassie发布了新的文献求助10
2秒前
Jw发布了新的文献求助10
3秒前
yu00完成签到,获得积分10
3秒前
个性的荆发布了新的文献求助10
4秒前
zuhangzhao发布了新的文献求助10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得30
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
夜琉璃应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
卢西完成签到,获得积分10
6秒前
蒋美桥发布了新的文献求助10
6秒前
Hello应助gky采纳,获得30
7秒前
7秒前
7秒前
箴琪完成签到,获得积分10
8秒前
hh完成签到,获得积分10
8秒前
科研通AI6应助袁子晴采纳,获得10
8秒前
斯文败类应助仲半邪采纳,获得10
9秒前
9秒前
An完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613808
求助须知:如何正确求助?哪些是违规求助? 4699007
关于积分的说明 14900028
捐赠科研通 4737694
什么是DOI,文献DOI怎么找? 2547249
邀请新用户注册赠送积分活动 1511162
关于科研通互助平台的介绍 1473642