Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助执着道天采纳,获得10
刚刚
老迟到的白猫完成签到 ,获得积分10
刚刚
郑文涛完成签到,获得积分10
刚刚
chengqum完成签到,获得积分10
刚刚
hahasun发布了新的文献求助10
1秒前
Lee完成签到,获得积分10
1秒前
香蕉觅云应助隐形的文昊采纳,获得10
1秒前
灵巧的孤容完成签到,获得积分10
2秒前
鱼鱼发布了新的文献求助10
2秒前
寒冷猫咪发布了新的文献求助10
2秒前
zr完成签到,获得积分10
2秒前
2秒前
乐乐应助偷影子里局外人采纳,获得10
2秒前
孤独天奇发布了新的文献求助10
2秒前
3秒前
fanfan完成签到 ,获得积分10
3秒前
花卷花卷发布了新的文献求助10
3秒前
4秒前
4秒前
Jasper应助暗能量采纳,获得10
4秒前
4秒前
你好发布了新的文献求助10
4秒前
Liz1054完成签到,获得积分10
4秒前
4秒前
司佳雨完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
畅快以菱发布了新的文献求助10
5秒前
丰知然应助润之采纳,获得10
6秒前
6秒前
华仔应助rocket采纳,获得10
6秒前
Firmian完成签到,获得积分10
7秒前
7秒前
7秒前
祝你发财完成签到,获得积分10
8秒前
BIN发布了新的文献求助10
8秒前
慕青应助莉莉子采纳,获得10
8秒前
诺贝尔发布了新的文献求助10
9秒前
清欢发布了新的文献求助30
9秒前
锅包肉完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419