Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大舟Austin完成签到 ,获得积分10
1秒前
Somogyis完成签到,获得积分10
4秒前
三石SUN完成签到 ,获得积分10
5秒前
干净的时光应助吱吱采纳,获得30
5秒前
樱香音子完成签到,获得积分10
6秒前
康康乃馨完成签到 ,获得积分10
6秒前
liucc完成签到,获得积分10
7秒前
大翟完成签到,获得积分10
8秒前
努力努力完成签到 ,获得积分10
10秒前
jideli完成签到 ,获得积分10
15秒前
漂亮的笑萍完成签到,获得积分10
16秒前
liuguohua126完成签到,获得积分10
17秒前
凌晨五点的完成签到,获得积分10
18秒前
caisongliang完成签到,获得积分10
21秒前
习月阳完成签到,获得积分10
22秒前
zcz完成签到 ,获得积分10
24秒前
mengmenglv完成签到 ,获得积分0
25秒前
美丽蘑菇完成签到 ,获得积分10
25秒前
星辰大海应助ZHOU采纳,获得10
25秒前
reflux应助田1986采纳,获得30
26秒前
赘婿应助foyefeng采纳,获得10
26秒前
summer应助YJY采纳,获得10
27秒前
27秒前
许宗菊发布了新的文献求助10
28秒前
拾贰完成签到 ,获得积分10
30秒前
华仔应助科研通管家采纳,获得10
31秒前
31秒前
中华牌老阿姨完成签到,获得积分10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
Rambo应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
LeoYiS214完成签到,获得积分10
31秒前
SH完成签到,获得积分10
32秒前
plain发布了新的文献求助10
33秒前
大尾巴白发布了新的文献求助10
33秒前
33秒前
暴躁的菠萝完成签到 ,获得积分10
34秒前
kelly完成签到,获得积分10
34秒前
poly完成签到,获得积分10
35秒前
笑点低的凉面完成签到,获得积分10
36秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921