Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦子越发布了新的文献求助10
刚刚
SciGPT应助黑粉头头采纳,获得30
刚刚
1秒前
kove0928发布了新的文献求助10
1秒前
两只棚猫完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
1700360436完成签到,获得积分10
2秒前
坚定迎天完成签到,获得积分10
2秒前
3秒前
tang123发布了新的文献求助30
3秒前
17720485712完成签到,获得积分10
3秒前
3秒前
3秒前
cola完成签到,获得积分10
4秒前
小胖鱼发布了新的文献求助10
4秒前
4秒前
lieditongxu发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
酷波er应助WangXinlin采纳,获得10
5秒前
754完成签到,获得积分10
5秒前
xunmizizai完成签到,获得积分10
5秒前
努力学习完成签到,获得积分10
5秒前
佩奇完成签到,获得积分10
5秒前
领导范儿应助ZYP采纳,获得10
5秒前
bfsd凡完成签到 ,获得积分10
5秒前
老实的棉花糖完成签到,获得积分10
6秒前
李可以完成签到 ,获得积分10
6秒前
pkaff发布了新的文献求助20
6秒前
司康发布了新的文献求助10
6秒前
sinmon发布了新的文献求助10
7秒前
研友_nEoMy8发布了新的文献求助10
7秒前
英俊的铭应助风间琉璃采纳,获得10
8秒前
8秒前
山山而川发布了新的文献求助10
8秒前
HHH发布了新的文献求助10
8秒前
8秒前
华仔应助二马三乡采纳,获得10
8秒前
Criminology34应助手抓饼啊采纳,获得10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099