Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Felixsun发布了新的文献求助10
1秒前
烟绯发布了新的文献求助10
1秒前
VDC发布了新的文献求助10
1秒前
2秒前
吴惜珊发布了新的文献求助10
3秒前
xiechangshan发布了新的文献求助10
3秒前
pdx666发布了新的文献求助10
4秒前
大模型应助胖肉肉采纳,获得10
5秒前
猫小海发布了新的文献求助10
5秒前
健忘的曲奇关注了科研通微信公众号
6秒前
舒适的梦玉完成签到,获得积分10
7秒前
Marcus完成签到,获得积分10
7秒前
8秒前
zzz发布了新的文献求助30
8秒前
光亮的灭绝完成签到 ,获得积分10
9秒前
kong完成签到 ,获得积分10
12秒前
12秒前
Akim应助Felixsun采纳,获得10
13秒前
14秒前
15秒前
吴惜珊完成签到,获得积分10
15秒前
yiqifan完成签到,获得积分0
17秒前
彭于晏应助xiechangshan采纳,获得10
17秒前
junsizzz完成签到,获得积分10
17秒前
胡图图完成签到 ,获得积分10
17秒前
18秒前
胖肉肉发布了新的文献求助10
18秒前
LeAve发布了新的文献求助10
20秒前
junjie发布了新的文献求助10
21秒前
XJTU_jyh完成签到,获得积分10
21秒前
神勇友灵完成签到,获得积分10
21秒前
21秒前
我是老大应助sss采纳,获得30
23秒前
科目三应助胖肉肉采纳,获得10
23秒前
猫小海完成签到,获得积分10
24秒前
笨笨无色完成签到,获得积分20
25秒前
烟绯完成签到 ,获得积分10
25秒前
善学以致用应助轻松黄豆采纳,获得10
25秒前
科目三应助明理的依柔采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093