亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images

计算机科学 人工智能 数字化病理学 一致性 细胞角蛋白 组织病理学 医学 病理 危险分层 免疫组织化学 内科学
作者
Ansh Kapil,Armin Meier,Keith Steele,Marlon C. Rebelatto,Katharina Nekolla,Alexander Haragan,Abraham Silva,Aleksandra Żuraw,Craig Barker,Marietta Scott,Tobias Wiestler,Simon Lanzmich,Günter Schmidt,Nicolas Brieu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2513-2523 被引量:10
标识
DOI:10.1109/tmi.2021.3081396
摘要

We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification. The second system is free from assumptions related to TC scoring and directly learns patient stratification from the overall survival time and event information. Both systems are built on a novel unpaired domain adaptation deep learning solution for epithelial region segmentation. This approach significantly reduces the need for large pixel-precise manually annotated datasets while superseding serial sectioning or re-staining of slides to obtain ground truth by cytokeratin staining. The capacity of the first system to replicate the TC scoring by pathologists is evaluated on 703 unseen cases, with an addition of 97 cases from an independent cohort. Our results show Lin's concordance values of 0.93 and 0.96 against pathologist scoring, respectively. The ability of the first and second system to stratify anti-PD-L1 treated patients is evaluated on 151 clinical samples. Both systems show similar stratification powers (first system: HR = 0.539, p = 0.004 and second system: HR = 0.525, p = 0.003) compared to TC scoring by pathologists (HR = 0.574, p = 0.01).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助zhoushishan采纳,获得10
2秒前
科研通AI6应助liaoyoujiao采纳,获得10
4秒前
小阿博发布了新的文献求助10
4秒前
氟锑酸完成签到 ,获得积分10
4秒前
4秒前
浅色西完成签到,获得积分10
5秒前
睽阔完成签到 ,获得积分10
5秒前
tusyuki发布了新的文献求助10
7秒前
tusyuki完成签到,获得积分10
14秒前
美满夏寒完成签到,获得积分10
15秒前
甜美的秋尽完成签到,获得积分10
20秒前
服了您完成签到 ,获得积分10
23秒前
杯喻完成签到 ,获得积分10
24秒前
26秒前
我是老大应助jj采纳,获得10
28秒前
杯喻关注了科研通微信公众号
29秒前
30秒前
姜昕发布了新的文献求助30
35秒前
35秒前
zxx发布了新的文献求助10
39秒前
jj发布了新的文献求助10
39秒前
赘婿应助Pluto采纳,获得10
46秒前
jj完成签到,获得积分10
48秒前
姜昕完成签到,获得积分10
54秒前
研友_VZG7GZ应助cs采纳,获得10
56秒前
59秒前
Owen应助zxx采纳,获得10
1分钟前
1分钟前
1分钟前
文静水池完成签到,获得积分10
1分钟前
如意的歌曲完成签到,获得积分10
1分钟前
1分钟前
cs发布了新的文献求助10
1分钟前
1分钟前
Pluto发布了新的文献求助10
1分钟前
1分钟前
新晋学术小生完成签到 ,获得积分10
1分钟前
山猪吃细糠完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649470
关于积分的说明 14689004
捐赠科研通 4591451
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846