Human action recognition using attention based LSTM network with dilated CNN features

计算机科学 Softmax函数 判别式 人工智能 卷积神经网络 模式识别(心理学) 帧(网络) 人工神经网络 机器学习 电信
作者
Khan Muhammad,Mustaqeem Khan,Amin Ullah,Ali Shariq Imran,Muhammad Sajjad,Mustafa Servet Kıran,Giovanna Sannino,Victor Hugo C. de Albuquerque
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:125: 820-830 被引量:158
标识
DOI:10.1016/j.future.2021.06.045
摘要

Human action recognition in videos is an active area of research in computer vision and pattern recognition. Nowadays, artificial intelligence (AI) based systems are needed for human-behavior assessment and security purposes. The existing action recognition techniques are mainly using pre-trained weights of different AI architectures for the visual representation of video frames in the training stage, which affect the features’ discrepancy determination, such as the distinction between the visual and temporal signs. To address this issue, we propose a bi-directional long short-term memory (BiLSTM) based attention mechanism with a dilated convolutional neural network (DCNN) that selectively focuses on effective features in the input frame to recognize the different human actions in the videos. In this diverse network, we use the DCNN layers to extract the salient discriminative features by using the residual blocks to upgrade the features that keep more information than a shallow layer. Furthermore, we feed these features into a BiLSTM to learn the long-term dependencies, which is followed by the attention mechanism to boost the performance and extract the additional high-level selective action related patterns and cues. We further use the center loss with Softmax to improve the loss function that achieves a higher performance in the video-based action classification. The proposed system is evaluated on three benchmarks, i.e., UCF11, UCF sports, and J-HMDB datasets for which it achieved a recognition rate of 98.3%, 99.1%, and 80.2%, respectively, showing 1%–3% improvement compared to the state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
丰富的小甜瓜完成签到,获得积分10
1秒前
5秒前
QR发布了新的文献求助10
5秒前
寂寞的威完成签到,获得积分10
7秒前
未改完成签到,获得积分10
7秒前
meatball1982完成签到,获得积分10
8秒前
11秒前
完美世界应助皮皮采纳,获得10
11秒前
wuw发布了新的文献求助10
14秒前
16秒前
Charley完成签到,获得积分20
17秒前
19秒前
21秒前
Charley发布了新的文献求助10
21秒前
追寻茗发布了新的文献求助10
22秒前
24秒前
愫浅完成签到 ,获得积分10
24秒前
夏一苒完成签到,获得积分20
25秒前
科研通AI5应助张张采纳,获得10
27秒前
29秒前
Leslie完成签到,获得积分10
33秒前
33秒前
谦让的西装完成签到 ,获得积分10
34秒前
34秒前
追寻茗完成签到,获得积分10
35秒前
wy1693207859完成签到,获得积分10
36秒前
haipronl发布了新的文献求助10
36秒前
gry发布了新的文献求助10
39秒前
gry完成签到,获得积分10
45秒前
科研通AI5应助yanier采纳,获得10
45秒前
失眠的板栗完成签到,获得积分10
46秒前
46秒前
47秒前
领导范儿应助YGTRECE采纳,获得10
49秒前
50秒前
ZZZ完成签到 ,获得积分10
51秒前
51秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339