化学气相沉积
动能
二硫化钼
材料科学
金属有机气相外延
碳纤维
杂质
钼
动力学
薄膜
沉积(地质)
增长率
化学计量学
化学工程
化学物理
加速度
活化能
分析化学(期刊)
电子迁移率
基质(水族馆)
金属
纳米技术
化学反应
燃烧化学气相沉积
指数增长
化学
化学动力学
氮气
无机化学
混合物理化学气相沉积
作者
Lei Liu,Yushu Wang,Ruikang Dong,Dongxu Fan,Si Meng,Lang Wu,Shengqiang Wu,Wei Xu,M. S. Feng,Ningmu Nathan Zou,Qingyu Yan,ZeHua Hu,Fei Lu,Shitong Zhu,Yuan Gao,Liang Ma,Yi Shi,Taotao Li,jinlan wang,Xinran Wang
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2026-01-29
卷期号:391 (6784): 494-498
标识
DOI:10.1126/science.aec7259
摘要
Kinetics determine the growth behavior of thin films, particularly for atomically thin transition-metal dichalcogenides. Metal-organic (MO) chemical vapor deposition (CVD) offers promise for scalable growth, but the reactions are kinetically limited, leading to nanometer-scale domain size and carbon contaminations. Here, we unveil the fundamental kinetic limitations and overcome them by introducing oxygen-assisted MOCVD (oxy-MOCVD) technology. By tuning reactions with oxygen, MO precursors are converted into high-purity transition-metal oxides and chalcogens, producing aligned molybdenum disulfide (MoS 2 ) domains with a size and growth rate that are orders of magnitude larger than conventional MOCVD. The MoS 2 is free of carbon impurities and exhibits average mobility exceeding 100 square centimeters per volt per second. The scalability of oxy-MOCVD is demonstrated by 150-millimeter single-crystal MoS 2 wafers, proving the feasibility of industrial-scale production.
科研通智能强力驱动
Strongly Powered by AbleSci AI