Study on the Capacity Degradation Mechanism and Capacity Predication of Lithium-Ion Battery Under Different Vibration Conditions in Six Degrees-of-Freedom

电池(电) 振动 锂(药物) 锂离子电池 降级(电信) 电池容量 计算机科学 机制(生物学) 汽车工程 模拟 控制理论(社会学) 工程类 功率(物理) 声学 人工智能 电信 控制(管理) 认识论 物理 内分泌学 哲学 医学 量子力学
作者
Wenhua Li,Mingze He,Yangyang Wang,Fangxu Shao
出处
期刊:Journal of electrochemical energy conversion and storage [ASM International]
卷期号:20 (2) 被引量:6
标识
DOI:10.1115/1.4054783
摘要

Abstract In order to study the degradation mechanism of lithium-ion batteries subjected to vibration aging in actual use and also to achieve capacity estimation and prediction, the following work has been done: First, the road spectra of two commonly seen domestic roads in China are collected in the field and modeled on a six degrees-of-freedom motion platform as the vibration working conditions of the batteries. Second, aging cycle experiments were conducted on batteries with different placement directions (X-axis direction, Y-axis direction, and Z-axis direction) under two vibration conditions, and the effects of experimental conditions on the decline results were analyzed; third, quantification of battery decline patterns to analyze the main causes of battery capacity decline; and then, through further analysis of the two vibration conditions on the lithium battery by in-situ and ex-situ methods as its internal mechanisms. Finally, the quantified results were input into the generative adversarial networks and long-term and short-term memory network prediction model to predict the capacity, and the errors of 20 predictions are as follows: the average values are 2.8561% for Group X, 2.7997% for Group Y, 3.0182% for Group Z, and 2.9478% for Group N, which meet the requirements of battery management system estimation. This paper provides a basis for the study of aging mechanism and capacity estimation of lithium-ion batteries under vibration aging conditions, which helps manufacturers to package batteries more rationally to extend battery life and develop battery management system (BMS)-related strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xx完成签到,获得积分10
2秒前
OGB应助十九采纳,获得20
2秒前
3秒前
2799发布了新的文献求助10
3秒前
5秒前
600发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
9秒前
lindalin发布了新的文献求助10
10秒前
hjmsn发布了新的文献求助10
10秒前
hxw发布了新的文献求助10
10秒前
As发布了新的文献求助10
11秒前
12秒前
nemo发布了新的文献求助10
12秒前
14秒前
刘文涛发布了新的文献求助10
14秒前
我是老大应助xzh采纳,获得10
14秒前
chen发布了新的文献求助10
15秒前
16秒前
chen发布了新的文献求助10
16秒前
19秒前
hxw关闭了hxw文献求助
19秒前
王战辉发布了新的文献求助10
20秒前
无花果应助潘文博采纳,获得10
20秒前
刘文涛完成签到,获得积分10
21秒前
nemo完成签到,获得积分20
21秒前
21秒前
汉堡包应助As采纳,获得10
21秒前
脑洞疼应助等待的谷波采纳,获得10
21秒前
21秒前
天天快乐应助hjmsn采纳,获得10
22秒前
22秒前
希望天下0贩的0应助lele2025采纳,获得10
22秒前
wanghuan发布了新的文献求助10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133242
求助须知:如何正确求助?哪些是违规求助? 3670057
关于积分的说明 11605422
捐赠科研通 3366639
什么是DOI,文献DOI怎么找? 1849624
邀请新用户注册赠送积分活动 913224
科研通“疑难数据库(出版商)”最低求助积分说明 828500