Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117761-117761 被引量:19
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助小熊采纳,获得10
1秒前
小宋完成签到,获得积分10
2秒前
charitial完成签到,获得积分10
3秒前
Saturn完成签到,获得积分10
3秒前
小雪发布了新的文献求助10
3秒前
jingchengke发布了新的文献求助30
5秒前
我是老大应助文章多多采纳,获得10
7秒前
Owen应助小土豆采纳,获得10
8秒前
9秒前
我是老大应助jingchengke采纳,获得30
11秒前
怡轻肝发布了新的文献求助10
12秒前
无花果应助yyymmma采纳,获得10
13秒前
14秒前
15秒前
彦祖i学术完成签到,获得积分10
15秒前
16秒前
研友_VZG7GZ应助hehe采纳,获得10
17秒前
wanci应助火华采纳,获得10
18秒前
largpark完成签到 ,获得积分10
18秒前
lwl666应助mark33442采纳,获得10
19秒前
木木木发布了新的文献求助10
20秒前
大媛大靳吃地瓜完成签到,获得积分10
21秒前
21秒前
汪峰发布了新的文献求助10
21秒前
健忘捕发布了新的文献求助10
21秒前
杰尼龟006发布了新的文献求助10
21秒前
21秒前
Lamis完成签到 ,获得积分10
22秒前
薛小烦完成签到,获得积分10
22秒前
华仔应助kery采纳,获得10
23秒前
24秒前
24秒前
畅快的以寒完成签到,获得积分10
25秒前
wentao发布了新的文献求助10
26秒前
Leewy发布了新的文献求助50
26秒前
blueskyzhi完成签到,获得积分10
26秒前
banshan3完成签到,获得积分10
27秒前
28秒前
monica发布了新的文献求助10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803756
求助须知:如何正确求助?哪些是违规求助? 3348586
关于积分的说明 10339425
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764096