清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics

共病 机器学习 人工智能 计算机科学 逻辑回归 梯度升压 疾病 卷积神经网络 医学 随机森林 精神科 内科学
作者
Shahadat Uddin,Shangzhou Wang,Haohui Lu,Arif Khan,Farshid Hajati,Matloob Khushi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117761-117761 被引量:28
标识
DOI:10.1016/j.eswa.2022.117761
摘要

The prevalence of chronic disease comorbidity and multimorbidity is a significant health issue worldwide. In many cases, for individuals, the occurrence of one chronic disease leads to the development of one or more other chronic conditions. This exerts a significant burden on healthcare systems globally. Disease comorbidity is defined as the simultaneous occurrence of more than one disease. And a person having more than two comorbidities is referred to as multimorbid. This study followed a machine learning and network analytics-based approach to predict major chronic disease comorbidity and multimorbidity. In doing so, this study first extracted patient networks from the research dataset. In such networks, nodes represent patients and edges between two nodes indicate that the underlying two patients had at least one common disease. This study also considered other relevant features from patients' health trajectories. Out of the five machine learning models considered in this study (Logistic regression, k-nearest neighbours, Naïve Bayes, Random Forest and Extreme Gradient Boosting) and two deep learning models (Multilayer perceptrons and Convolutional neural networks), Extreme Gradient Boosting showed the highest accuracy (95.05%), followed by the Convolutional neural networks (91.67%). The attribute of the number of episodes from the patient trajectory had been found as the most important feature, followed by the patient network attribute of transitivity. Other relevant results (feature correlation, variable clustering, confusion matrix and kernel density estimation) were also reported and discussed. The findings and insights of this study can help healthcare stakeholders and policymakers mitigate the negative impact of disease comorbidity and multimorbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋卷完成签到 ,获得积分10
9秒前
Gary完成签到 ,获得积分10
47秒前
研友_nxw2xL完成签到,获得积分10
48秒前
muriel完成签到,获得积分10
53秒前
1分钟前
冯乌完成签到 ,获得积分10
1分钟前
精明寒松完成签到 ,获得积分10
1分钟前
1分钟前
lalala完成签到,获得积分10
1分钟前
CodeCraft应助时尚的尔白采纳,获得10
1分钟前
taoxz521完成签到 ,获得积分10
1分钟前
指导灰完成签到 ,获得积分10
2分钟前
4分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
小桐学应助科研通管家采纳,获得20
4分钟前
好想睡一会完成签到,获得积分10
4分钟前
天真酒窝完成签到,获得积分10
5分钟前
喜悦的香之完成签到 ,获得积分10
5分钟前
5分钟前
心想事成完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
时尚的尔白完成签到,获得积分20
5分钟前
Oliver完成签到 ,获得积分10
5分钟前
稳重岩完成签到 ,获得积分10
6分钟前
JamesPei应助yee采纳,获得10
6分钟前
想人陪的飞薇完成签到 ,获得积分10
6分钟前
CodeCraft应助olekravchenko采纳,获得30
7分钟前
水清木华完成签到,获得积分10
7分钟前
8分钟前
hgl发布了新的文献求助10
8分钟前
Nancy0818完成签到 ,获得积分10
8分钟前
小桐学应助科研通管家采纳,获得20
8分钟前
小桐学应助科研通管家采纳,获得20
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
方白秋完成签到,获得积分10
9分钟前
lixuebin完成签到 ,获得积分10
9分钟前
知白完成签到 ,获得积分10
9分钟前
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130865
求助须知:如何正确求助?哪些是违规求助? 3667722
关于积分的说明 11600915
捐赠科研通 3365615
什么是DOI,文献DOI怎么找? 1849109
邀请新用户注册赠送积分活动 912878
科研通“疑难数据库(出版商)”最低求助积分说明 828355