Affective Action and Interaction Recognition by Multi-View Representation Learning from Handcrafted Low-Level Skeleton Features

代码本 计算机科学 人工智能 直方图 模式识别(心理学) 代表(政治) 班级(哲学) 对象(语法) 图像(数学) 政治 政治学 法学
作者
Danilo Avola,Marco Cascio,Luigi Cinque,Alessio Fagioli,Gian Luca Foresti
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (10) 被引量:13
标识
DOI:10.1142/s012906572250040x
摘要

Human feelings expressed through verbal (e.g. voice) and non-verbal communication channels (e.g. face or body) can influence either human actions or interactions. In the literature, most of the attention was given to facial expressions for the analysis of emotions conveyed through non-verbal behaviors. Despite this, psychology highlights that the body is an important indicator of the human affective state in performing daily life activities. Therefore, this paper presents a novel method for affective action and interaction recognition from videos, exploiting multi-view representation learning and only full-body handcrafted characteristics selected following psychological and proxemic studies. Specifically, 2D skeletal data are extracted from RGB video sequences to derive diverse low-level skeleton features, i.e. multi-views, modeled through the bag-of-visual-words clustering approach generating a condition-related codebook. In this way, each affective action and interaction within a video can be represented as a frequency histogram of codewords. During the learning phase, for each affective class, training samples are used to compute its global histogram of codewords stored in a database and later used for the recognition task. In the recognition phase, the video frequency histogram representation is matched against the database of class histograms and classified as the closest affective class in terms of Euclidean distance. The effectiveness of the proposed system is evaluated on a specifically collected dataset containing 6 emotion for both actions and interactions, on which the proposed system obtains 93.64% and 90.83% accuracy, respectively. In addition, the devised strategy also achieves in line performances with other literature works based on deep learning when tested on a public collection containing 6 emotions plus a neutral state, demonstrating the effectiveness of the presented approach and confirming the findings in psychological and proxemic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BoBo完成签到 ,获得积分10
刚刚
冲浪男孩226完成签到 ,获得积分10
7秒前
盼盼完成签到 ,获得积分10
7秒前
9秒前
12秒前
思源应助yiyimx采纳,获得10
14秒前
14秒前
fan发布了新的文献求助10
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
15秒前
冰魂应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
称心乐枫发布了新的文献求助10
15秒前
冰魂应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
善学以致用应助暮葵采纳,获得10
17秒前
Maigret完成签到,获得积分10
19秒前
姽婳wy发布了新的文献求助10
20秒前
linjiaxin完成签到,获得积分10
20秒前
无花果应助高挑的书雪采纳,获得10
22秒前
lbq800完成签到 ,获得积分10
23秒前
norman应助jewelliang采纳,获得30
25秒前
梦在远方完成签到 ,获得积分10
27秒前
28秒前
小苑完成签到,获得积分10
30秒前
暮葵发布了新的文献求助10
31秒前
嘉人完成签到 ,获得积分10
32秒前
楮树完成签到,获得积分20
36秒前
暮葵完成签到,获得积分10
37秒前
qiao应助John采纳,获得10
40秒前
酷波er应助灵巧忆南采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776384
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207777
捐赠科研通 3037103
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870