A survey on next location prediction techniques, applications, and challenges

计算机科学 弹道 数据科学 大数据 数据挖掘 领域(数学) 人体动力学 城市计算 机器学习 人工智能 物理 数学 天文 纯数学
作者
Ayele Gobezie Chekol,Marta Sintayehu Fufa
出处
期刊:Eurasip Journal on Wireless Communications and Networking [Springer Nature]
卷期号:2022 (1) 被引量:19
标识
DOI:10.1186/s13638-022-02114-6
摘要

Abstract Next location prediction has recently gained great attention from researchers due to its importance in different application areas. Recent growth of location-based service applications has vast domain influence such as traffic-flow prediction, weather forecast, and network resource optimization. Nowadays, due to the explosive increasing of positioning and sensor devices, big trajectory data are produced related to human movement. Using this big location-based trajectory data, researchers tend to predict human next location. Research efforts are spent on the put forward overall picture of next location prediction, and number of works has been done so as to realize robust next location prediction systems. However, in-depth study of those state-of-the-art works is required to know well the applications and challenges. Therefore, the aim of this paper is an extensive review on existing different next location prediction approaches. This work offers an extensive overview of location prediction enveloping basic definitions and concepts, data sources, approaches, and applications. In next location prediction, trajectory is represented by a sequence of timestamped geographical locations. It is challenging to analyze and mine trajectory data due to the complex characteristics reflected in human mobility, which is affected by multiple contextual information. Heterogeneous data generated from different sources, users’ random movement behavior, and the time sensitivity of trajectory data are some of the challenges. In this manuscript, we have discussed various location prediction approaches, applications, and challenges, and it sheds light on important points regarding future research directions. Furthermore, application and challenges are addressed related to the user’s next location prediction. Finally, we draw the overall conclusion of the survey, which is important for the development of robust next location prediction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xty发布了新的文献求助10
刚刚
yeyii完成签到,获得积分10
2秒前
3秒前
研友_ZlqeD8完成签到,获得积分10
4秒前
云溪应助hcasdgchadcgawhu采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
chen完成签到 ,获得积分10
6秒前
领导范儿应助大大大采纳,获得10
6秒前
xty完成签到,获得积分10
7秒前
小叶子完成签到 ,获得积分10
8秒前
论文写到头秃完成签到,获得积分10
11秒前
Akim应助xzy998采纳,获得10
12秒前
莫飞完成签到,获得积分10
14秒前
17秒前
英俊的铭应助renyun采纳,获得10
18秒前
Ryuichi完成签到 ,获得积分10
18秒前
小二郎应助麦格布丁采纳,获得10
20秒前
大大大发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
24秒前
24秒前
大个应助monster采纳,获得30
24秒前
bc应助冷静的奇迹采纳,获得20
24秒前
奋斗机器猫完成签到 ,获得积分10
24秒前
homer完成签到,获得积分10
25秒前
25秒前
26秒前
明理的从霜完成签到,获得积分10
28秒前
xzy998发布了新的文献求助10
29秒前
renyun发布了新的文献求助10
29秒前
Anaero发布了新的文献求助10
29秒前
贲zi发布了新的文献求助10
30秒前
yan发布了新的文献求助10
30秒前
麦格布丁发布了新的文献求助10
30秒前
suiyi发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781094
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227563
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669546
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734