材料科学
热导率
扫描电子显微镜
石墨烯
复合材料
制作
基质(水族馆)
导电体
复合数
纳米技术
医学
海洋学
地质学
病理
替代医学
作者
Shuguang Li,Shixiang Lü,Wenguo Xu,Jiasheng Tao
出处
期刊:ACS omega
[American Chemical Society]
日期:2022-01-26
卷期号:7 (5): 4267-4276
被引量:1
标识
DOI:10.1021/acsomega.1c05957
摘要
As technology continues to develop, electronic devices are becoming ever more integrated. The high level of integration results in a higher volume of calculations and higher heat generation. Metal materials have always been good conductors of heat and are commonly used in thermally conductive devices. However, the thermal conductivity of metallic materials decreases at elevated temperatures. Therefore, it is reasonable to develop new composite materials as thermal conductivity materials. In the experiments, a novel composite material with a sandwich structure has been designed. The material uses metallic aluminum (Al) as a substrate. Then, the metallic aluminum was soaked in a polydopamine (PDA) solution. Graphene (G) on the surface of the material was then enriched using an electrophoretic method. The material was removed and annealed to form the G-PDA-Al composite. According to the measurement, the thermal conductivity of the material is 492 W·m-1·K-1, which means ultrahigh thermal conductivity. Elongation experiments were carried out, and they increased the strength of the material by 12.4%. The formation of the material was then analyzed. The construction of the material was then carefully examined. The surface morphology, elemental composition, and structures were investigated by using scanning electron microscopy equipped by a scanning electron microscope, X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Differences from ordinary thermal materials were obtained based on calculations. A flexible thermal conductor was fabricated by using this material. The device can reduce the spontaneous combustion of ternary lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI