亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge

热失控 荷电状态 电池(电) 热的 电池组 计算机科学 模拟 工程类 电子工程 物理 功率(物理) 量子力学 气象学
作者
Wencan Zhang,Nan Ouyang,Xiuxing Yin,Xingyao Li,Weixiong Wu,Liansheng Huang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:323: 119614-119614 被引量:49
标识
DOI:10.1016/j.apenergy.2022.119614
摘要

Thermal runaway (TR) propagation is triggered in a battery pack by abnormalities such as a cell fire or explosion, which leads to severe consequences. Predicting the TR propagation is challenging due to the complex, high non-linearity, and uncertain disturbances of TR. This paper establishes an electro-thermal coupling simulation model of TR propagation to supplement experimental data and public datasets for model training and verification. Then, a data-driven fusion model named Multi-Mode and Multi-Task Thermal Propagation Forecasting Neural Network (MMTPFNN) is established quantitative advance multi-step prediction of TR propagation in Li-ion battery modules, and a temperature-based TR propagation grading warning strategy is proposed. The TR propagation is mainly influenced by the thermal characteristics of surrounding batteries, and the temperature distribution in the entire battery module is of great significance to the prediction of TR propagation. Herein, the model is presented by using the thermal image and the discrete operating data of cells. Furthermore, because TR is a small probability event, obtaining the thermal image of the battery module requires additional system memory and computational resources. A switching strategy of the prediction model is established to improve the applicability of the model with the temperature threshold of 60 °C. When the battery is in a safe temperature range (below 60 °C), the long short-term memory (LSTM) model is run to predict the battery temperature. Once the battery temperature is detected above 60 °C, the thermal image is captured, and the MMTPFNN model is run to predict the TR propagation. In the validation section, different network structures are discussed, and different time resolutions and different window settings of the MMTPFNN are compared. Finally, the early warning strategy with three alert levels is introduced, and the effectiveness of the warning strategy with different window settings and initial SoCs is further discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
英姑应助ly采纳,获得10
1分钟前
1分钟前
ly发布了新的文献求助10
1分钟前
drhwang完成签到,获得积分10
1分钟前
sleet完成签到 ,获得积分10
1分钟前
2分钟前
mellow发布了新的文献求助30
2分钟前
2分钟前
Liangyong_Fu完成签到 ,获得积分10
3分钟前
小蘑菇应助flj采纳,获得10
3分钟前
田様应助纪欣静采纳,获得10
3分钟前
4分钟前
纪欣静发布了新的文献求助10
4分钟前
4分钟前
健康的大船完成签到 ,获得积分10
4分钟前
4分钟前
flj发布了新的文献求助10
4分钟前
4分钟前
夏侯德东完成签到,获得积分10
4分钟前
善良的剑通完成签到 ,获得积分10
5分钟前
科研通AI2S应助Epoch采纳,获得10
6分钟前
奔跑西木完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
末世发布了新的文献求助10
7分钟前
7分钟前
7分钟前
qyn1234566发布了新的文献求助10
7分钟前
qyn1234566完成签到,获得积分10
8分钟前
Otorhino完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
小白菜完成签到,获得积分10
10分钟前
orixero应助flj采纳,获得10
10分钟前
puyehwu发布了新的文献求助10
10分钟前
科研通AI5应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360051
捐赠科研通 3068736
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033