Deep Learning for Detecting Pneumothorax on Chest Radiographs after Needle Biopsy: Clinical Implementation

医学 气胸 射线照相术 计算机辅助设计 放射科 胸片 回顾性队列研究 外科
作者
Wonju Hong,Eui Jin Hwang,Jong Hyuk Lee,Jongsoo Park,Jin Mo Goo,Chan Woo Park
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/radiol.211706
摘要

Background Accurate detection of pneumothorax on chest radiographs, the most common complication of percutaneous transthoracic needle biopsies (PTNBs), is not always easy in practice. A computer-aided detection (CAD) system may help detect pneumothorax. Purpose To investigate whether a deep learning-based CAD system can improve detection performance for pneumothorax on chest radiographs after PTNB in clinical practice. Materials and Methods A CAD system for post-PTNB pneumothorax detection on chest radiographs was implemented in an institution in February 2020. This retrospective cohort study consecutively included chest radiographs interpreted with CAD assistance (CAD-applied group; February 2020 to November 2020) and those interpreted before implementation (non-CAD group; January 2018 to January 2020). The reference standard was defined by consensus reading by two radiologists. The diagnostic accuracy for pneumothorax was compared between the two groups using generalized estimating equations. Matching was performed according to whether the radiograph reader and PTNB operator were the same using the greedy method. Results A total of 676 radiographs from 655 patients (mean age: 67 years ± 11; 390 men) in the CAD-applied group and 676 radiographs from 664 patients (mean age: 66 years ± 12; 400 men) in the non-CAD group were included. The incidence of pneumothorax was 18.2% (123 of 676 radiographs) in the CAD-applied group and 22.5% (152 of 676 radiographs) in the non-CAD group (P = .05). The CAD-applied group showed higher sensitivity (85.4% vs 67.1%), negative predictive value (96.8% vs 91.3%), and accuracy (96.8% vs 92.3%) than the non-CAD group (all P < .001). The sensitivity for a small amount of pneumothorax improved in the CAD-applied group (pneumothorax of <10%: 74.5% vs 51.4%, P = .009; pneumothorax of 10%-15%: 92.7% vs 70.2%, P = .008). Among patients with pneumothorax, 34 of 655 (5.0%) in the non-CAD group and 16 of 664 (2.4%) in the CAD-applied group (P = .009) required subsequent drainage catheter insertion. Conclusion A deep learning-based computer-aided detection system improved the detection performance for pneumothorax on chest radiographs after lung biopsy. © RSNA, 2022 See also the editorial by Schiebler and Hartung in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hh发布了新的文献求助10
刚刚
刚刚
ZZ0901完成签到,获得积分10
1秒前
活力的映阳完成签到,获得积分20
1秒前
mryun完成签到,获得积分10
1秒前
默默纲完成签到,获得积分10
2秒前
英俊的铭应助GJ采纳,获得10
2秒前
3秒前
科大y完成签到,获得积分10
3秒前
3秒前
Owen应助BaodaGUODNG采纳,获得10
4秒前
青槐完成签到,获得积分10
4秒前
4秒前
宏hong发布了新的文献求助10
4秒前
科目三应助冰冷天蝎座采纳,获得10
5秒前
5秒前
helly完成签到,获得积分10
5秒前
kc135完成签到,获得积分10
5秒前
芒go完成签到,获得积分10
5秒前
白白发布了新的文献求助30
5秒前
6秒前
jie完成签到 ,获得积分10
6秒前
闪闪寒荷完成签到 ,获得积分10
7秒前
鲜艳的手链完成签到,获得积分10
7秒前
慕青应助SY采纳,获得10
8秒前
T_MC郭完成签到,获得积分10
8秒前
9秒前
美人鱼听不了超声波完成签到 ,获得积分10
10秒前
大白发布了新的文献求助10
10秒前
Once发布了新的文献求助10
11秒前
忐忑的黑米完成签到,获得积分10
13秒前
小阿博完成签到,获得积分10
14秒前
linlang完成签到,获得积分10
14秒前
15秒前
spaghetti完成签到,获得积分10
16秒前
研友_VZG7GZ应助过客采纳,获得10
16秒前
知行合一发布了新的文献求助10
16秒前
16秒前
嘉嘉琦完成签到,获得积分10
16秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816359
求助须知:如何正确求助?哪些是违规求助? 3359791
关于积分的说明 10405011
捐赠科研通 3077727
什么是DOI,文献DOI怎么找? 1690339
邀请新用户注册赠送积分活动 813749
科研通“疑难数据库(出版商)”最低求助积分说明 767816