多细胞生物
生物
秀丽隐杆线虫
细胞
计算生物学
转录组
单细胞测序
卵细胞
细胞生物学
电池类型
有机体
表型
基因
单细胞分析
模式生物
遗传学
基因表达
外显子组测序
作者
Junyue Cao,Jonathan S. Packer,Vijay Ramani,Darren A. Cusanovich,Chau Huynh,Riza M. Daza,Xiaojie Qiu,Choli Lee,Scott N. Furlan,Frank J. Steemers,Andrew Adey,R Waterston,Cole Trapnell,Jay Shendure
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2017-08-17
卷期号:357 (6352): 661-667
被引量:1247
标识
DOI:10.1126/science.aam8940
摘要
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI