Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

医学 糖尿病性视网膜病变 糖尿病 青光眼 眼科 视网膜病变 黄斑变性 验光服务 视网膜 人工智能 计算机科学 内分泌学
作者
Daniel Shu Wei Ting,Carol Y. Cheung,Gilbert Lim,Gavin Siew Wei Tan,Duc Quang Nguyen,Alfred Tau Liang Gan,Haslina Hamzah,Renata García-Franco,Ian Yeo,Shu Yen Lee,Edmund Yick Mun Wong,Charumathi Sabanayagam,Mani Baskaran,Farah Ibrahim,Ngiap Chuan Tan,Eric Finkelstein,Ecosse L. Lamoureux,Yhi Wong,Neil M. Bressler,Sobha Sivaprasad,Rohit Varma,Jost B. Jonas,Mingguang He,Ching‐Yu Cheng,Chui Ming Gemmy Cheung,Tin Aung,Wynne Hsu,Mong Li Lee,Tien Yin Wong
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2211-2211 被引量:1808
标识
DOI:10.1001/jama.2017.18152
摘要

Importance

A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.

Objective

To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.

Design, Setting, and Participants

Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes.

Exposures

Use of a deep learning system.

Main Outcomes and Measures

Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard.

Results

In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images).

Conclusions and Relevance

In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jro发布了新的文献求助10
刚刚
1秒前
小二郎应助AmigoA采纳,获得10
1秒前
2秒前
3秒前
情怀应助勤恳的农夫采纳,获得30
4秒前
4秒前
Hello应助能干涵瑶采纳,获得10
4秒前
5秒前
啊菠萝发布了新的文献求助10
5秒前
9秒前
9秒前
10秒前
Yxian发布了新的文献求助10
10秒前
王冬雪完成签到,获得积分10
11秒前
倩倩0857完成签到,获得积分10
11秒前
星辰大海应助周新哲采纳,获得10
11秒前
深情安青应助啊菠萝采纳,获得10
12秒前
schuang完成签到,获得积分10
14秒前
王冬雪发布了新的文献求助10
14秒前
卷王不吃饭完成签到 ,获得积分10
16秒前
17秒前
奋斗蝴蝶完成签到,获得积分10
18秒前
优秀的dd完成签到 ,获得积分10
20秒前
shouyu29应助科研通管家采纳,获得50
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得30
22秒前
Owen应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
22秒前
wanci应助加油啊1118采纳,获得10
23秒前
baroque完成签到 ,获得积分10
24秒前
123完成签到,获得积分10
25秒前
孤独尔白应助落寞的乐曲采纳,获得10
26秒前
26秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793336
求助须知:如何正确求助?哪些是违规求助? 3338129
关于积分的说明 10288745
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804197
科研通“疑难数据库(出版商)”最低求助积分说明 761758