清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The EEG microstate topography is predominantly determined by intracortical sources in the alpha band

地方政府 脑电图 后扣带 人脑 神经科学 心理学 扣带回前部 阿尔法(金融) 物理 大脑活动与冥想 模式识别(心理学) 皮质(解剖学) 人工智能 认知 计算机科学 认知心理学 发展心理学 结构效度 心理测量学
作者
Patricia Milz,Roberto D. Pascual‐Marqui,Peter Achermann,Kieko Kochi,Pascal L. Faber
出处
期刊:NeuroImage [Elsevier]
卷期号:162: 353-361 被引量:152
标识
DOI:10.1016/j.neuroimage.2017.08.058
摘要

Human brain electric activity can be measured at high temporal and fairly good spatial resolution via electroencephalography (EEG). The EEG microstate analysis is an increasingly popular method used to investigate this activity at a millisecond resolution by segmenting it into quasi-stable states of approximately 100 ms duration. These so-called EEG microstates were postulated to represent atoms of thoughts and emotions and can be classified into four classes of topographies A through D, which explain up to 90% of the variance of continuous EEG. The present study investigated whether these topographies are primarily driven by alpha activity originating from the posterior cingulate cortex (all topographies), left and right posterior cortices, and the anterior cingulate cortex (topographies A, B, and C, respectively). We analyzed two 64-channel resting state EEG datasets (N = 61 and N = 78) of healthy participants. Sources of head-surface signals were determined via exact low resolution electromagnetic tomography (eLORETA). The Hilbert transformation was applied to identify instantaneous source strength of four EEG frequency bands (delta through beta). These source strength values were averaged for each participant across time periods belonging to a particular microstate. For each dataset, these averages of the different microstate classes were compared for each voxel. Consistent differences across datasets were identified via a conjunction analysis. The intracortical strength and spatial distribution of alpha band activity mainly determined whether a head-surface topography of EEG microstate class A, B, C, or D was induced. EEG microstate class C was characterized by stronger alpha activity compared to all other classes in large portions of the cortex. Class A was associated with stronger left posterior alpha activity than classes B and D, and class B was associated with stronger right posterior alpha activity than A and D. Previous results indicated that EEG microstate dynamics reflect a fundamental mechanism of the human brain that is altered in different mental states in health and disease. They are characterized by systematic transitions between four head-surface topographies, the EEG microstate classes. Our results show that intra-cortical alpha oscillations, which likely reflect decreased cortical excitability, primarily account for the emergence of these classes. We suggest that microstate class dynamics reflect transitions between four global attractor states that are characterized by selective inhibition of specific intra-cortical regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06完成签到,获得积分10
2秒前
16秒前
37秒前
49秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
科研通AI6应助宝宝爱洗脚采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
Zoe发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
Zoe完成签到,获得积分10
4分钟前
4分钟前
4分钟前
虚幻念寒完成签到 ,获得积分10
5分钟前
卢莹完成签到,获得积分10
5分钟前
木乙完成签到 ,获得积分10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
脑洞疼应助Jonathan采纳,获得10
6分钟前
6分钟前
随心所欲完成签到 ,获得积分10
7分钟前
7分钟前
汪汪淬冰冰完成签到,获得积分10
7分钟前
SimonShaw完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605