WordNet公司
计算机科学
自然语言处理
同义词(分类学)
人工智能
任务(项目管理)
词(群论)
关系(数据库)
领域(数学)
语义学(计算机科学)
语义关系
情报检索
语言学
数据挖掘
数学
认知
属
哲学
经济
神经科学
生物
管理
程序设计语言
纯数学
植物
作者
Fanqing Meng,Yuteng Zhang,Wenpeng Lü,Weiyu Zhang,Jinyong Cheng
出处
期刊:2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC)
日期:2017-12-01
卷期号:: 372-376
被引量:1
标识
DOI:10.1109/spac.2017.8304307
摘要
Chinese word semantic relation classification is an important and challenging task in the field of natural language processing. This paper describes our method to classify Chinese word semantic relation based on multiple knowledge resources at NLPCC Evaluation. Firstly, given pairs of Chinese words, we try to utilize different knowledge resources, such as Tongyici Cilin and HowNet, to classify them into four kinds of semantic relations, which are synonym, antonym, hyponym and meronym. Secondly, for those uncovered pairs of Chinese words, we translate them into English, then classify them with the help of English knowledge resources, such as WordNet and BabelNet. Experiments on the evaluation dataset at NLPCC 2017 demonstrate that the method can achieve the macro-averaged F1-Score of 0.634 and precision of 0.875. Among all of the participants, the method get the best precision, which shows its superiority over other methods on precision.
科研通智能强力驱动
Strongly Powered by AbleSci AI