ResACEUnet: An Improved Transformer Unet Model for 3D Seismic Fault Detection

卷积神经网络 计算机科学 稳健性(进化) 特征提取 人工智能 模式识别(心理学) 分割 数据挖掘 生物化学 化学 基因
作者
Shaohuan Zu,Penghui Zhao,Chaofan Ke,Junxing Cao
标识
DOI:10.1029/2024jh000232
摘要

Abstract Detecting fault constitutes a pivotal aspect of seismic interpretation, significantly influencing the outcomes of petroleum and gas exploration. As artificial intelligence advances, convolutional neural network (CNN) has proven effective in detecting faults in seismic interpretation. Nevertheless, the receptive field of a convolutional layer within CNN is inherently limited, focusing on extracting local features, which lead to the detection of fewer and discontinuous fault features. In this study, integrating the local feature extraction capabilities of CNN with the global feature extraction prowess of transformer, we proposed a U‐shaped hybrid architecture model named ResACEUnet (Attention‐Convolution Unet with Efficient block) to detect fault of three‐dimensional (3D) seismic data. In ResACEUnet, we introduced a module called ACE block, which integrates convolution and attention mechanisms. This module enabled the model to simultaneously extract local features and model global contextual information, capturing more accurate fault features. In addition, we utilized a joint loss function named BCEDice loss, which composed of BCE (binary cross‐entropy) loss and dice loss to tackle the challenge of imbalanced positive and negative samples. The model was trained on a synthetic data set, with a range of data augmentation techniques were employed to bolster its generalization capabilities and robustness. We implemented our proposed method on the offshore F3 seismic data from the Netherlands and seismic data from Kerry3D and Parihaka in New Zealand. Compared to conventional popular models such as Unet, ResUnet, and SwinUnetR, ResACEUnet demonstrated superior capabilities in capturing more features and identifying fault with higher accuracy and continuity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
王婷完成签到,获得积分10
刚刚
刚刚
小白完成签到,获得积分10
刚刚
cccc1111111完成签到,获得积分10
刚刚
66发布了新的文献求助10
1秒前
lu完成签到 ,获得积分10
1秒前
暖暖发布了新的文献求助10
2秒前
2秒前
2秒前
赘婿应助木棉采纳,获得10
2秒前
2秒前
动漫大师发布了新的文献求助50
3秒前
常绝山完成签到 ,获得积分10
3秒前
3秒前
cccc1111111发布了新的文献求助10
4秒前
wujiming完成签到,获得积分20
4秒前
zzxpp完成签到 ,获得积分10
4秒前
4秒前
4秒前
为不争发布了新的文献求助10
5秒前
5秒前
丘比特应助wind采纳,获得10
5秒前
汉堡包应助Gracious采纳,获得30
5秒前
nene发布了新的文献求助10
6秒前
6秒前
66完成签到,获得积分10
7秒前
7秒前
8秒前
wuqi发布了新的文献求助10
8秒前
酷波er应助娜行采纳,获得10
9秒前
9秒前
zzxpp发布了新的文献求助10
9秒前
10秒前
科研通AI5应助Alexendrial_kai采纳,获得10
10秒前
77完成签到,获得积分10
10秒前
10秒前
玉洁完成签到,获得积分10
11秒前
大雨发布了新的文献求助10
12秒前
1234完成签到,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857