清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DoseTransfer: A Transformer Embedded Model With Transfer Learning for Radiotherapy Dose Prediction of Cervical Cancer

宫颈癌 计算机科学 学习迁移 放射治疗 杠杆(统计) 人工智能 卷积神经网络 机器学习 癌症 医学 放射科 内科学
作者
Lu Wen,Jianghong Xiao,Chen Zu,Xi Wu,Jiliu Zhou,Xingchen Peng,Yan Wang
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 95-104 被引量:8
标识
DOI:10.1109/trpms.2023.3330772
摘要

Cervical cancer stands as a prominent female malignancy, posing a serious threat to women's health. The clinical solution typically involves time-consuming and laborious radiotherapy planning. Although convolutional neural network (CNN)-based models have been investigated to automate the radiotherapy planning by predicting its outcomes, i.e., dose distribution maps, the insufficiency of data in the cervical cancer dataset limits the prediction performance and generalization of models. Additionally, the intrinsic locality of convolution operations also hinders models from capturing dose information at a global range, limiting the prediction accuracy. In this article, we propose a transfer learning framework embedded with transformer, namely, DoseTransfer, to automatically predict the dose distribution for cervical cancer. To address the limited data in the cervical cancer dataset, we leverage highly correlated clinical information from rectum cancer and transfer this knowledge in a two-phase framework. Specifically, the first phase is the pretraining phase which aims to pretrain the model with the rectum cancer dataset and extract prior knowledge from rectum cancer, while the second phase is the transferring phase where the priorly learned knowledge is effectively transferred to cervical cancer and guides the model to achieve better accuracy. Moreover, both phases are embedded with transformers to capture the global dependencies ignored by CNN, learning wider feature representations. Experimental results on the in-house datasets (i.e., rectum cancer dataset and cervical cancer dataset) have demonstrated the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
8秒前
如歌完成签到,获得积分10
10秒前
24秒前
27秒前
量子星尘发布了新的文献求助10
30秒前
毛毛完成签到,获得积分10
30秒前
44秒前
44秒前
48秒前
49秒前
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
Liufgui完成签到,获得积分0
1分钟前
英喆完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
无情的匪完成签到 ,获得积分10
2分钟前
PrayOne完成签到 ,获得积分10
3分钟前
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
HOLLYWOO完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4037638
求助须知:如何正确求助?哪些是违规求助? 3575468
关于积分的说明 11373644
捐赠科研通 3305393
什么是DOI,文献DOI怎么找? 1819185
邀请新用户注册赠送积分活动 892620
科研通“疑难数据库(出版商)”最低求助积分说明 815022