Learning Visual Representation Clusters for Cross-View Geo-Location

计算机科学 代表(政治) 人工智能 光学(聚焦) 观点 特征学习 模式识别(心理学) 可视化 特征(语言学) 领域(数学) 数学 艺术 语言学 哲学 物理 光学 政治 政治学 纯数学 法学 视觉艺术
作者
Hwanjong Song,Zhen Wang,Yi Lei,Dianxi Shi,Xiaochong Tong,Lei Yuan,Chunping Qiu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3326005
摘要

Cross-view geo-location is a crucial research field that determines the geographic location from images taken from different viewpoints. It is often studied as a retrieval task, where the query images are with unknown locations, and the database includes images with geo-tags from a different platform. Learning image representations by neural networks is an important step, and one typical training method is using a classification loss, where cross-view images of the same locations are considered the same category. However, existing methods only focus on pushing the representation distances of different categories while ignoring the intra-category representation distances of samples from different platforms. Considering that controlling the intra-category distance can help to guide the model to extract compact category-sharing representations from cross-view images, we propose a categorized cluster loss to learn separate and compact representation clusters. Categorized cluster loss can supervise the network to learn invariant information from samples of different platforms by constraining both the inter-category and intra-category feature distances. Meanwhile, we design a category-view-stratified sampling strategy, which samples balanced inputs in terms of both category and view in each batch during the learning process. We implemented our approach with a lightweight OSNet-based network and achieved higher accuracy with fewer parameters on a typical and challenging cross-view geo-location dataset than most state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
1秒前
1秒前
cc完成签到 ,获得积分10
1秒前
1秒前
英姑应助zzzz12采纳,获得10
2秒前
完美世界应助翔96采纳,获得10
2秒前
2秒前
852应助sun采纳,获得10
3秒前
3秒前
wrzzz完成签到,获得积分10
4秒前
4秒前
5秒前
AEROU发布了新的文献求助10
5秒前
6秒前
颜色发布了新的文献求助10
7秒前
耘耔完成签到,获得积分10
7秒前
ALICE完成签到,获得积分10
9秒前
lll完成签到 ,获得积分10
9秒前
我是老大应助Xinxxx采纳,获得10
9秒前
袁咏琳冲冲冲完成签到,获得积分10
9秒前
9秒前
H_dd发布了新的文献求助10
10秒前
11秒前
虾502完成签到 ,获得积分10
11秒前
wrzzz发布了新的文献求助10
12秒前
科研孙完成签到,获得积分10
12秒前
埃勒娃完成签到,获得积分10
13秒前
翔96发布了新的文献求助10
15秒前
诸葛御风应助笗一一采纳,获得10
15秒前
sonne应助嘻嘻采纳,获得10
16秒前
传奇3应助MRM采纳,获得10
16秒前
16秒前
李健应助生椰拿铁采纳,获得10
17秒前
19秒前
打打应助二十五采纳,获得10
20秒前
20秒前
23秒前
阿九发布了新的文献求助10
24秒前
小学生发布了新的文献求助10
25秒前
完美的沉鱼完成签到 ,获得积分10
27秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451