Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis

荟萃分析 列联表 置信区间 医学 人工智能 骨关节炎 机器学习 统计 数据挖掘 内科学 计算机科学 数学 病理 替代医学
作者
Soheil Mohammadi,Mohammad Amin Salehi,Ali Jahanshahi,Mohammad Shahrabi Farahani,Seyed Sina Zakavi,Sadra Behrouzieh,Mahdi Gouravani,Ali Guermazi
出处
期刊:Osteoarthritis and Cartilage [Elsevier BV]
卷期号:32 (3): 241-253 被引量:8
标识
DOI:10.1016/j.joca.2023.09.011
摘要

Objectives As an increasing number of studies apply artificial intelligence (AI) algorithms in osteoarthritis (OA) detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI, and to compare them with clinicians' performance. Materials and methods A search in PubMed and Scopus was performed to find studies published up to April 2022 that evaluated and/or validated an AI algorithm for the detection or classification of OA. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the involved joint and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Prediction Model Study Risk of Bias Assessment Tool reporting guidelines. Results Of the 61 studies included, 27 studies with 91 contingency tables provided sufficient data to enter the meta-analysis. The pooled sensitivities for AI algorithms and clinicians on internal validation test sets were 88% (95% confidence interval [CI]: 86,91) and 80% (95% CI: 68,88) and pooled specificities were 81% (95% CI: 75,85) and 79% (95% CI: 80,85), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 94% (95% CI: 90,97) and 91% (95% CI: 77,97), respectively. Conclusion Although the results of this meta-analysis should be interpreted with caution due to the potential pitfalls in the included studies, the promising role of AI as a diagnostic adjunct to radiologists is indisputable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunrise完成签到,获得积分10
1秒前
1秒前
33ovo完成签到 ,获得积分10
1秒前
pu完成签到,获得积分20
1秒前
DDJoy完成签到,获得积分10
1秒前
落后的萃完成签到,获得积分10
1秒前
燕子发布了新的文献求助10
2秒前
3秒前
pu发布了新的文献求助10
3秒前
欧阳惜筠发布了新的文献求助10
3秒前
可爱的函函应助洛水伊南采纳,获得10
4秒前
共享精神应助jzyy采纳,获得10
4秒前
董向远完成签到,获得积分10
5秒前
铁锅炖大鹅完成签到,获得积分10
5秒前
5秒前
上官若男应助科研挂采纳,获得10
6秒前
田様应助淡定的凡蕾采纳,获得10
6秒前
科研通AI5应助蜗居采纳,获得10
6秒前
开心的懂完成签到 ,获得积分10
7秒前
痴情的烧鹅完成签到,获得积分10
7秒前
7秒前
8秒前
情怀应助跳跳妈妈采纳,获得10
11秒前
燕子完成签到,获得积分10
11秒前
JETSTREAM完成签到,获得积分10
11秒前
12秒前
常常在努力完成签到,获得积分10
12秒前
默默的皮牙子应助十一采纳,获得10
12秒前
完美芹发布了新的文献求助10
12秒前
luct发布了新的文献求助10
13秒前
8788完成签到,获得积分10
13秒前
心灵美千易完成签到,获得积分10
14秒前
15秒前
lijia3发布了新的文献求助10
15秒前
科目三应助英勇笑萍采纳,获得10
16秒前
16秒前
17秒前
852应助garyaa采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137