Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis

荟萃分析 列联表 置信区间 医学 人工智能 骨关节炎 机器学习 统计 数据挖掘 内科学 计算机科学 数学 病理 替代医学
作者
Soheil Mohammadi,Mohammad Amin Salehi,Ali Jahanshahi,Mohammad Shahrabi Farahani,Seyed Sina Zakavi,Sadra Behrouzieh,Mahdi Gouravani,Ali Guermazi
出处
期刊:Osteoarthritis and Cartilage [Elsevier BV]
卷期号:32 (3): 241-253 被引量:23
标识
DOI:10.1016/j.joca.2023.09.011
摘要

Objectives As an increasing number of studies apply artificial intelligence (AI) algorithms in osteoarthritis (OA) detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI, and to compare them with clinicians' performance. Materials and methods A search in PubMed and Scopus was performed to find studies published up to April 2022 that evaluated and/or validated an AI algorithm for the detection or classification of OA. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the involved joint and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Prediction Model Study Risk of Bias Assessment Tool reporting guidelines. Results Of the 61 studies included, 27 studies with 91 contingency tables provided sufficient data to enter the meta-analysis. The pooled sensitivities for AI algorithms and clinicians on internal validation test sets were 88% (95% confidence interval [CI]: 86,91) and 80% (95% CI: 68,88) and pooled specificities were 81% (95% CI: 75,85) and 79% (95% CI: 80,85), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 94% (95% CI: 90,97) and 91% (95% CI: 77,97), respectively. Conclusion Although the results of this meta-analysis should be interpreted with caution due to the potential pitfalls in the included studies, the promising role of AI as a diagnostic adjunct to radiologists is indisputable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助tdtk采纳,获得30
1秒前
surilige发布了新的文献求助10
3秒前
zhc990807完成签到,获得积分10
4秒前
4秒前
快乐的水彤完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
共享精神应助zll采纳,获得10
6秒前
所所应助直率新柔采纳,获得10
8秒前
8秒前
淡然伊发布了新的文献求助10
10秒前
田様应助毛毛采纳,获得10
10秒前
Yolo完成签到,获得积分10
10秒前
12秒前
13秒前
科研通AI6应助胡123456789采纳,获得10
13秒前
13秒前
yuhuaizhu关注了科研通微信公众号
13秒前
斯文败类应助林娜琏采纳,获得10
13秒前
13秒前
zll完成签到,获得积分10
14秒前
科研通AI6应助苏苏采纳,获得10
15秒前
省静霞关注了科研通微信公众号
15秒前
量子星尘发布了新的文献求助10
16秒前
露露应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
orixero应助科研通管家采纳,获得10
17秒前
17秒前
Hello应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Sixth Edition 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4642822
求助须知:如何正确求助?哪些是违规求助? 4034478
关于积分的说明 12478722
捐赠科研通 3722737
什么是DOI,文献DOI怎么找? 2054750
邀请新用户注册赠送积分活动 1085746
科研通“疑难数据库(出版商)”最低求助积分说明 967629