Identifying Catalyst Property Descriptors for CO2 Hydrogenation to Methanol via Big-Data Analysis

催化作用 甲醇 选择性 化学 工业催化剂 材料科学 纳米技术 化学工程 催化剂载体 有机化学 工程类
作者
Dan Zhao,Nils Ortner,Martin Holeňa,Sebastian Wohlrab,Evgenii V. Kondratenko
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (16): 10547-10559 被引量:14
标识
DOI:10.1021/acscatal.3c01683
摘要

Carbon dioxide (CO2) capture and valorization have great potential for mitigating emissions of this greenhouse gas and accordingly for preserving the environment for future generations. In this regard, hydrogenation of CO2 to methanol is highly attractive because this product is a valuable energy carrier and can also be used for production of various everyday commodities. Although many research papers on this topic have been published in the past decades, there is still a lack of fundamentals relevant to control catalyst performance. Herein, we demonstrate how statistically validated Big-Data analysis of available literature data identified hidden descriptors that can be applied for purposeful catalyst development and for identification of optimal reaction conditions. In view of catalyst development, the kinds of structural promoters or supports for bulk or supported Cu-, In-, or Pd-based catalysts are the most important descriptors for methanol selectivity, with Ce and Zr being the most efficient promoters. The type and the parameters of the preparation methods as well as the kind of active component precursors are also important in this regard. To validate the conclusion about the structural promoter, a series of supported CuZn-containing catalysts were prepared. The best-performing CuZn/CeO2 catalyst outperformed the state-of-the-art CuZn-based catalysts tested at a total pressure of up to 30 bar using a feed with the ratio of H2/CO2 of 3. In addition to the catalyst composition and the preparation method, our analysis suggests that the most often used Cu-based catalysts lose their methanol selectivity due to the decomposition of this product to CO. Our control experiments with the developed CuZn-based catalysts proved that this undesired reaction can be hindered when the catalyst support contains Ce or through increasing H2 partial pressure. This knowledge is important for further catalyst development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MM发布了新的文献求助10
1秒前
wanting发布了新的文献求助10
2秒前
季宇完成签到,获得积分10
2秒前
自觉水绿完成签到,获得积分10
2秒前
谦让的念柏完成签到,获得积分10
2秒前
乐乐应助清爽的一笑采纳,获得10
3秒前
wjy发布了新的文献求助10
3秒前
心信鑫发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
jxc077完成签到 ,获得积分20
6秒前
6秒前
7秒前
7秒前
李健的小迷弟应助WAXI采纳,获得10
7秒前
解语花发布了新的文献求助10
7秒前
7秒前
8秒前
10秒前
10秒前
799发布了新的文献求助10
10秒前
ZoeyD完成签到 ,获得积分10
10秒前
科研通AI2S应助标致雪碧采纳,获得10
11秒前
11秒前
11秒前
pickme发布了新的文献求助10
11秒前
11秒前
12秒前
wjy完成签到,获得积分10
12秒前
复杂大象发布了新的文献求助10
12秒前
美满的天薇完成签到,获得积分10
12秒前
毕业就行发布了新的文献求助10
12秒前
甲乙丙丁发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4418436
求助须知:如何正确求助?哪些是违规求助? 3899558
关于积分的说明 12126535
捐赠科研通 3545437
什么是DOI,文献DOI怎么找? 1945647
邀请新用户注册赠送积分活动 985840
科研通“疑难数据库(出版商)”最低求助积分说明 882215