SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 运动表象 脑-机接口 脑电图 Sinc函数 计算机视觉 神经科学 心理学
作者
Ke Liu,Mingzhao Yang,Xin Xing,Zhuliang Yu,Wei Wu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056024-056024 被引量:6
标识
DOI:10.1088/1741-2552/acf7f4
摘要

Objective.Motor imagery (MI) is widely used in brain-computer interfaces (BCIs). However, the decode of MI-EEG using convolutional neural networks (CNNs) remains a challenge due to individual variability.Approach.We propose a fully end-to-end CNN called SincMSNet to address this issue. SincMSNet employs the Sinc filter to extract subject-specific frequency band information and utilizes mixed-depth convolution to extract multi-scale temporal information for each band. It then applies a spatial convolutional block to extract spatial features and uses a temporal log-variance block to obtain classification features. The model of SincMSNet is trained under the joint supervision of cross-entropy and center loss to achieve inter-class separable and intra-class compact representations of EEG signals.Main results.We evaluated the performance of SincMSNet on the BCIC-IV-2a (four-class) and OpenBMI (two-class) datasets. SincMSNet achieves impressive results, surpassing benchmark methods. In four-class and two-class inter-session analysis, it achieves average accuracies of 80.70% and 71.50% respectively. In four-class and two-class single-session analysis, it achieves average accuracies of 84.69% and 76.99% respectively. Additionally, visualizations of the learned band-pass filter bands by Sinc filters demonstrate the network's ability to extract subject-specific frequency band information from EEG.Significance.This study highlights the potential of SincMSNet in improving the performance of MI-EEG decoding and designing more robust MI-BCIs. The source code for SincMSNet can be found at:https://github.com/Want2Vanish/SincMSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hh采纳,获得10
1秒前
3秒前
3秒前
yamoon完成签到,获得积分10
5秒前
5秒前
地平完成签到,获得积分10
5秒前
5秒前
屎球球完成签到,获得积分10
5秒前
5秒前
Fjj完成签到,获得积分10
5秒前
枳甜完成签到,获得积分10
7秒前
希望天下0贩的0应助dw采纳,获得10
8秒前
yy发布了新的文献求助30
8秒前
9秒前
9秒前
王子安应助曲怜阳采纳,获得10
9秒前
NekoNeko发布了新的文献求助10
10秒前
Orange应助精明寇采纳,获得10
10秒前
萝卜干发布了新的文献求助10
10秒前
市井小民完成签到,获得积分10
11秒前
小林完成签到,获得积分10
12秒前
虞敏发布了新的文献求助10
12秒前
科目三应助xingyi采纳,获得10
13秒前
14秒前
luan发布了新的文献求助10
14秒前
江舟添盛望完成签到 ,获得积分10
15秒前
15秒前
yy完成签到,获得积分10
16秒前
LHF发布了新的文献求助10
17秒前
lixiang完成签到,获得积分10
18秒前
dw完成签到,获得积分20
19秒前
kg完成签到,获得积分10
24秒前
25秒前
HuaJingjing完成签到,获得积分10
27秒前
丘比特应助阿拉曼采纳,获得10
28秒前
科研通AI5应助房产中介采纳,获得10
28秒前
29秒前
30秒前
31秒前
Akim应助冰柠檬采纳,获得10
33秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826623
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453002
捐赠科研通 3088482
什么是DOI,文献DOI怎么找? 1699152
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770136