已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance evaluation of deep learning models for the classification and identification of dental implants

人工智能 放大倍数 计算机科学 生成对抗网络 深度学习 对象(语法) 植入 模式识别(心理学) 计算机视觉 医学 外科
作者
Hyun-Jun Kong,Jin-Yong Yoo,Jun-Hyeok Lee,Sang-Ho Eom,Ji-Hyun Kim
出处
期刊:Journal of Prosthetic Dentistry [Elsevier BV]
被引量:12
标识
DOI:10.1016/j.prosdent.2023.07.009
摘要

Statement of problem Dental implant systems can be identified using image classification deep learning. However, investigations on the accuracy of classifying and identifying implant design through an object detection model are lacking. Purpose The purpose of this study was to evaluate the performance of an object detection deep learning model for classifying the implant designs of 103 types of implants. Material and methods From panoramic radiographs, 14 037 implant images were extracted. Implant designs were subdivided into 10 classes in the coronal, 13 in the middle, and 10 in the apical third. Classes with fewer than 50 images were excluded from the training dataset. Among the images, 80% were used as training data, and the remaining 20% as test data; the data were generated 3 times for 3-fold cross-validation (implant datasets 1, 2, and 3). Versions 5 and 7 of you only look once (YOLO) algorithm were used to train the model, and the mean average precision (mAP) was evaluated. Subsequently, data augmentation was performed using image processing and a real-enhanced super-resolution generative adversarial network, and the accuracy was re-evaluated using YOLOv7. Results The mAP of YOLOv7 in the 3 datasets was 0.931, 0.984, and 0.884, respectively, which were higher than the mAP of YOLOv5. After image processing in implant dataset-1, the mAP improved to 0.986 and, with the real-enhanced super-resolution generative adversarial network, to 0.988 and 0.986 at magnification ×2 and ×4, respectively. Conclusions The object detection model for classifying implant designs found a high accuracy for 26 classes. The mAP of the model differed depending on the type of algorithm, image processing process, and detailed implant design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nini发布了新的文献求助10
2秒前
4秒前
7秒前
六爻发布了新的文献求助10
9秒前
科研通AI5应助七月江城采纳,获得10
9秒前
16秒前
川上富江完成签到 ,获得积分10
17秒前
完美世界应助六爻采纳,获得10
18秒前
KK完成签到,获得积分10
20秒前
dpcrel发布了新的文献求助10
22秒前
淡淡的白羊完成签到 ,获得积分10
22秒前
22秒前
天将明完成签到 ,获得积分10
23秒前
苦哈哈完成签到 ,获得积分10
23秒前
Alivelean完成签到,获得积分20
24秒前
27秒前
Alivelean发布了新的文献求助10
28秒前
飞鱼z完成签到 ,获得积分10
28秒前
zain完成签到 ,获得积分10
29秒前
木木三发布了新的文献求助10
30秒前
吹皱一湖春水完成签到 ,获得积分10
30秒前
dpcrel完成签到,获得积分10
31秒前
失眠幻灵发布了新的文献求助30
31秒前
kelien1205完成签到 ,获得积分10
31秒前
飞快的孱发布了新的文献求助10
31秒前
35秒前
37秒前
峰feng完成签到 ,获得积分10
37秒前
冷酷新柔完成签到,获得积分10
37秒前
俭朴的世界完成签到 ,获得积分10
39秒前
txg发布了新的文献求助10
40秒前
飞快的孱完成签到,获得积分10
43秒前
七月江城发布了新的文献求助10
43秒前
怕孤独的如凡完成签到 ,获得积分10
44秒前
JamesPei应助txg采纳,获得10
45秒前
abc完成签到 ,获得积分10
49秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
50秒前
田様应助科研通管家采纳,获得10
50秒前
隐形曼青应助科研通管家采纳,获得10
50秒前
竹筏过海应助科研通管家采纳,获得30
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777548
求助须知:如何正确求助?哪些是违规求助? 3322938
关于积分的说明 10212367
捐赠科研通 3038242
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201