High-precision and efficiency diagnosis for polymer electrolyte membrane fuel cell based on physical mechanism and deep learning

计算机科学 卷积神经网络 断层(地质) 质子交换膜燃料电池 嵌入 趋同(经济学) 可靠性(半导体) 人工神经网络 滤波器(信号处理) 特征选择 深度学习 选择(遗传算法) 人工智能 数据挖掘 燃料电池 工程类 地质学 物理 量子力学 经济 功率(物理) 地震学 经济增长 化学工程 计算机视觉
作者
Zhichao Gong,Bowen Wang,Yunqi Xing,Yifan Xu,Zhengguo Qin,Yongqian Chen,Fan Zhang,Fei Gao,Bin Li,Yan Yin,Qing Du,Kui Jiao
出处
期刊:eTransportation [Elsevier BV]
卷期号:18: 100275-100275
标识
DOI:10.1016/j.etran.2023.100275
摘要

As a nonlinear and dynamic system, the polymer electrolyte membrane fuel cell (PEMFC) system requires a comprehensive failure prediction and health management system to ensure its safety and reliability. In this study, a data-driven PEMFC health diagnosis framework is proposed, coupling the fault embedding model, sensor pre-selection method and deep learning diagnosis model. Firstly, a physical-based mechanism fault embedding model of PEMFC is developed to collect the data on various health states. This model can be utilized to determine the effects of different faults on cell performance and assist in the pre-selection of sensors. Then, considering the effect of fault pattern on decline, a sensor pre-selection method based on the analytical model is proposed to filter the insensitive variable from the sensor set. The diagnosis accuracy and computational time could be improved 3.7% and 40% with the help of pre-selection approach, respectively. Finally, the data collected by the optimal sensor set is utilized to develop the fault diagnosis model based on 1D-convolutional neural network (CNN). The results show that the proposed health diagnosis framework has better diagnosis performance compared with other popular diagnosis models and is conducive to online diagnosis, with 99.2% accuracy, higher computational efficiency, faster convergence speed and smaller training error. It is demonstrated that faster convergence speed and smaller training error are reflected in the proposed health diagnosis framework, which can significantly reduce computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Milk发布了新的文献求助10
1秒前
awerguio发布了新的文献求助10
2秒前
T拐拐发布了新的文献求助10
2秒前
冷静的莞完成签到 ,获得积分0
3秒前
幽默从安完成签到,获得积分20
4秒前
???完成签到 ,获得积分10
5秒前
6秒前
666应助牛牛眉目采纳,获得10
7秒前
li完成签到 ,获得积分10
9秒前
严三笑完成签到,获得积分10
9秒前
马晓武完成签到,获得积分10
10秒前
zss完成签到 ,获得积分10
10秒前
丘比特应助Yaodong采纳,获得10
10秒前
情怀应助csy采纳,获得10
10秒前
科研鸟发布了新的文献求助10
12秒前
666应助Farr采纳,获得10
12秒前
科研通AI2S应助huangyi采纳,获得10
15秒前
简单的笑蓝完成签到 ,获得积分10
15秒前
煜清清完成签到 ,获得积分10
15秒前
16秒前
16秒前
淡淡的绿柳完成签到,获得积分10
18秒前
万叶发布了新的文献求助10
20秒前
haofan17完成签到,获得积分0
20秒前
YY发布了新的文献求助30
20秒前
Shaynin完成签到,获得积分10
21秒前
充电宝应助fanli采纳,获得10
21秒前
XXXX完成签到,获得积分10
22秒前
发顶刊完成签到,获得积分10
22秒前
小二郎应助少年弦采纳,获得10
22秒前
weiyu发布了新的文献求助10
23秒前
wangbq完成签到 ,获得积分10
23秒前
24秒前
Swim完成签到,获得积分20
25秒前
丘比特应助邵晓啸采纳,获得20
27秒前
科研通AI2S应助发顶刊采纳,获得10
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
好运来应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388