AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection

计算机科学 异常检测 人工智能 光学(聚焦) 异常 对象(语法) 模式识别(心理学) 班级(哲学) 语义学(计算机科学) 正态性 目标检测 计算机视觉 任务(项目管理) 图像(数学) 数学 统计 光学 物理 社会心理学 经济 管理 程序设计语言 心理学
作者
Qihang Zhou,Guansong Pang,Yü Tian,Shibo He,Jiming Chen
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2310.18961
摘要

Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liux完成签到,获得积分10
1秒前
1秒前
传奇3应助YiWeiYing采纳,获得30
3秒前
在水一方应助饭团0814采纳,获得10
3秒前
完美大神完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
方睿智发布了新的文献求助10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
bc应助zinc采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
5Cu发布了新的文献求助30
9秒前
浪客完成签到 ,获得积分10
10秒前
SMJ完成签到,获得积分10
11秒前
yy发布了新的文献求助10
11秒前
Shi发布了新的文献求助20
11秒前
顺心的舞蹈完成签到,获得积分10
12秒前
橙汁完成签到,获得积分10
13秒前
13秒前
南风发布了新的文献求助20
13秒前
15秒前
17秒前
皮儿完成签到,获得积分20
17秒前
过了年我就四岁完成签到,获得积分10
17秒前
洁净的岩发布了新的文献求助10
18秒前
18秒前
zh完成签到,获得积分10
18秒前
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807134
求助须知:如何正确求助?哪些是违规求助? 3351915
关于积分的说明 10356503
捐赠科研通 3067918
什么是DOI,文献DOI怎么找? 1684783
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765787