亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ViTScore: A Novel Three-Dimensional Vision Transformer Method for Accurate Prediction of Protein–Ligand Docking Poses

对接(动物) 蛋白质-配体对接 计算机科学 人工智能 虚拟筛选 机器学习 试验装置 药物发现 计算生物学 数据挖掘 生物信息学 生物 医学 护理部
作者
Linyuan Guo,Tian Qiu,Jianxin Wang
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 734-743 被引量:8
标识
DOI:10.1109/tnb.2023.3274640
摘要

Protein-ligand interactions (PLIs) are essential for cellular activities and drug discovery, and due to the complexity and high cost of experimental methods, there is a great demand for computational approaches, such as protein-ligand docking, to decipher PLI patterns. One of the most challenging aspects of protein-ligand docking is to identify near-native conformations from a set of poses, but traditional scoring functions still have limited accuracy. Therefore, new scoring methods are urgently needed for methodological and/or practical implications. We present a novel deep learning-based scoring function for ranking protein-ligand docking poses based on Vision Transformer (ViT), named ViTScore. To recognize near-native poses from a set of poses, ViTScore voxelizes the protein-ligand interactional pocket into a 3D grid labeled by the occupancy contribution of atoms in different physicochemical classes. This allows ViTScore to capture the subtle differences between spatially and energetically favorable near-native poses and unfavorable non-native poses without needing extra information. After that, ViTScore will output the prediction of the root mean square deviation (rmsd) of a docking pose with reference to the native binding pose. ViTScore is extensively evaluated on diverse test sets including PDBbind2019 and CASF2016, and obtains significant improvements over existing methods in terms of RMSE, R and docking power. Moreover, the results demonstrate that ViTScore is a promising scoring function for protein-ligand docking, and it can be used to accurately identify near-native poses from a set of poses. Furthermore, the results suggest that ViTScore is a powerful tool for protein-ligand docking, and it can be used to accurately identify near-native poses from a set of poses. Additionally, ViTScore can be used to identify potential drug targets and to design new drugs with improved efficacy and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marciu33发布了新的文献求助10
6秒前
整齐道消完成签到,获得积分10
9秒前
Marciu33完成签到,获得积分10
21秒前
科研通AI5应助Marciu33采纳,获得10
31秒前
善学以致用应助整齐道消采纳,获得10
46秒前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
yuqinghui98完成签到 ,获得积分10
2分钟前
整齐道消发布了新的文献求助10
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
逝水无痕发布了新的文献求助10
3分钟前
陈好好完成签到 ,获得积分10
3分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
yy发布了新的文献求助10
6分钟前
yy完成签到,获得积分10
6分钟前
morina9301完成签到,获得积分10
6分钟前
houyp0326完成签到,获得积分10
6分钟前
在水一方应助Emon采纳,获得10
7分钟前
小蘑菇应助科研通管家采纳,获得10
7分钟前
英姑应助科研通管家采纳,获得10
7分钟前
7分钟前
学术通zzz发布了新的文献求助10
7分钟前
CipherSage应助单纯的雅香采纳,获得10
8分钟前
make217完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
9分钟前
kangxu发布了新的文献求助20
9分钟前
NexusExplorer应助科研通管家采纳,获得10
9分钟前
学术通zzz发布了新的文献求助10
9分钟前
9分钟前
小二郎应助Jenana采纳,获得150
9分钟前
9分钟前
9分钟前
9分钟前
左丘如萱完成签到,获得积分10
9分钟前
Jenana发布了新的文献求助150
9分钟前
10分钟前
七十岁发布了新的文献求助10
10分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819930
求助须知:如何正确求助?哪些是违规求助? 3362797
关于积分的说明 10418814
捐赠科研通 3081174
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522