机械加工
田口方法
表面粗糙度
能源消耗
材料科学
表面光洁度
冶金
机械工程
铝
合金
复合材料
工程类
电气工程
作者
Sajid Raza Zaidi,Najam ul Qadir,Syed Husain Imran Jaffery,Muhammad Khan,Mushtaq Khan,Jana Petrů
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2022-11-15
卷期号:15 (22): 8065-8065
被引量:12
摘要
Due to the increasing demand for higher production rates in the manufacturing sector, there is a need to manufacture finished or near-finished parts. Burrs and surface roughness are the two most important indicators of the surface quality of any machined parts. In addition to this, there is a constant need to reduce energy consumption during the machining operation in order to reduce the carbon footprint. Milling is one of the most extensively used cutting processes in the manufacturing industry. This research was conducted to investigate the effect of machining parameters on surface roughness, burr width, and specific energy consumption. In the present research, the machining parameters were varied using the Taguchi L9 array design of experiments, and their influence on the response parameters, including specific cutting energy, surface finish, and burr width, was ascertained. The response trends of burr width, energy consumption, and surface roughness with respect to the input parameters were analyzed using the main effect plots. Analysis of variance indicated that the cutting speed has contribution ratios of 55% and 47.98% of the specific cutting energy and burr width on the down-milling side, respectively. On the other hand, the number of inserts was found to be the influential member, with contribution ratios of 68.74% and 35% of the surface roughness and burr width on the up-milling side. The validation of the current design of the experiments was carried out using confirmatory tests in the best and worst conditions of the output parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI