Optimizing inland container logistics through dry ports: A two-stage stochastic mixed-integer programming approach considering volume discounts and consolidation in rail transport

合并(业务) 整数规划 容器(类型理论) 集装箱化 运筹学 随机规划 调度(生产过程) 重新安置 数学优化 计算机科学 工程类 运输工程 业务 数学 机械工程 程序设计语言 会计
作者
Ercan Kurtuluş
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:174: 108768-108768 被引量:9
标识
DOI:10.1016/j.cie.2022.108768
摘要

It is essential for container shipping companies to plan for the optimum number and locations of dry ports as well as efficient inland container logistics operations to reduce costs and environmental impacts while improving customer service. The plan for optimum inland container transportation network design must account for demand uncertainty to eliminate financial difficulty due to redundant investment. In this regard, this study proposed a two-stage stochastic mixed-integer programming model for optimizing inland container logistics through dry ports. The model contributes to the state of the art in current research by including a piecewise-linear cost function for railway transportation to account for volume discounts, integrating full container scheduling with transport mode selection and empty container relocation for consolidation, and reflecting the fact that the amount of import and export full containers transported between customers (consignees and consignors) and seaports are exogenously decided. The solution results demonstrated the definite performance superiority of the progressive hedging algorithm over the extensive form solution. Additionally, the value of stochastic solution calculation showed that the application of stochastic solution might result in significant cost savings compared to the application of mean value deterministic solution. The proposed model can be applied for practical necessities to design robust optimum inland container logistics operations using intermodal rail transport with the progressive hedging algorithm as an efficient solution approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刺完成签到,获得积分10
1秒前
科研通AI5应助工诩采纳,获得10
2秒前
Akim应助深情的幼南采纳,获得10
2秒前
3秒前
liusu完成签到,获得积分10
3秒前
烟花应助刻苦大叔采纳,获得10
3秒前
4秒前
热情的大白完成签到 ,获得积分10
4秒前
FashionBoy应助宝贝采纳,获得10
5秒前
JamesPei应助范1采纳,获得10
5秒前
张一完成签到,获得积分20
7秒前
Akim应助霅霅采纳,获得10
8秒前
8秒前
求泉发布了新的文献求助10
8秒前
linciko发布了新的文献求助10
8秒前
星辰大海应助史前巨怪采纳,获得10
8秒前
9秒前
吴是温发布了新的文献求助10
9秒前
完美世界应助岑梨愁采纳,获得10
9秒前
YangSihan发布了新的文献求助10
9秒前
10秒前
Yi发布了新的文献求助10
10秒前
jiojiolq完成签到,获得积分10
11秒前
谭821完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
14秒前
15秒前
ding应助55155255采纳,获得10
15秒前
15秒前
如意鸭子完成签到 ,获得积分10
15秒前
16秒前
Ecokarster发布了新的文献求助10
16秒前
Hello应助YangSihan采纳,获得10
16秒前
Driscoll完成签到 ,获得积分10
16秒前
16秒前
徐徐完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746790
求助须知:如何正确求助?哪些是违规求助? 4094282
关于积分的说明 12666770
捐赠科研通 3806195
什么是DOI,文献DOI怎么找? 2101322
邀请新用户注册赠送积分活动 1126627
关于科研通互助平台的介绍 1003206