Autonomous intelligent control of earth pressure balance shield machine based on deep reinforcement learning

强化学习 计算机科学 护盾 人工智能 深度学习 领域(数学) 模拟 机器学习 地质学 岩石学 数学 纯数学
作者
Xuanyu Liu,Wenshuai Zhang,Cheng Shao,Yudong Wang,Qiumei Cong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106702-106702 被引量:9
标识
DOI:10.1016/j.engappai.2023.106702
摘要

In order to reduce the construction risk caused by human operation error and improve the geological adaptive ability of the shield machine, an autonomous intelligent control method is proposed for shield machine within the framework of interaction–judgment–decision based on Deep Deterministic Policy Gradient (DDPG) deep reinforcement learning in this study. Due to the strong nonlinear relationship between the shield machine's tunneling parameters, this research builds a deep reinforcement learning environment using mechanism model of sealed cabin pressure. DDPG agent model of the shield machine is established to replace the shield machine to interact and train with the geological environment. By minimizing the difference between the target pressure setting value and the sealed cabin pressure value, the dynamic balance between the sealed cabin pressure and the pressure on the excavation surface is realized, and the best strategy is obtained. Through real-time interaction with the geological environment, the method in this paper can dynamically adjust the tunneling parameters, accurately control the sealed cabin pressure, and has a strong geological adaptive ability. By realizing the intelligent decision-making of the tunneling parameters, it greatly improves the independent decision-making ability of the shield machine system, reduces the inaccuracy of human operation, and provides an effective guarantee for the efficient and safe operation of the shield machine. This study applies deep reinforcement learning technology to the control field of earth pressure balance shield machine, promotes AI technology, and provides a new idea for the development of AI construction technology in engineering field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河发布了新的文献求助100
刚刚
大模型应助老陈采纳,获得10
2秒前
5秒前
6秒前
7秒前
8秒前
彩色亿先发布了新的文献求助10
9秒前
9秒前
fenghp发布了新的文献求助10
11秒前
燕燕于飞发布了新的文献求助10
12秒前
Akim应助kepler采纳,获得10
12秒前
oreo发布了新的文献求助10
13秒前
康轲发布了新的文献求助30
14秒前
科研通AI2S应助小六采纳,获得10
14秒前
年轻的馒头完成签到,获得积分10
14秒前
茶茶完成签到,获得积分10
15秒前
酷波er应助将1采纳,获得10
16秒前
陈宇完成签到,获得积分10
17秒前
无花果应助比大家采纳,获得10
17秒前
oreo完成签到,获得积分10
20秒前
科研通AI5应助燕燕于飞采纳,获得10
22秒前
fenghp完成签到 ,获得积分20
23秒前
雨竹完成签到 ,获得积分10
23秒前
蒋依伶发布了新的文献求助10
24秒前
SS应助dududu采纳,获得10
24秒前
25秒前
阳光的千易完成签到,获得积分10
26秒前
aaefv完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
叫滚滚发布了新的文献求助20
28秒前
28秒前
小六发布了新的文献求助10
29秒前
wj完成签到 ,获得积分0
29秒前
Qi完成签到 ,获得积分10
29秒前
maomao1986完成签到,获得积分10
30秒前
将1发布了新的文献求助10
30秒前
30秒前
比大家发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780127
求助须知:如何正确求助?哪些是违规求助? 3325442
关于积分的说明 10223131
捐赠科研通 3040629
什么是DOI,文献DOI怎么找? 1668938
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758623