A variegated GWO algorithm implementation in emerging power systems optimization problems

计算机科学 水准点(测量) 算法 微电网 数学优化 混合算法(约束满足) 元启发式 还原(数学) 萤火虫算法 电力系统 最优化问题 功率(物理) 粒子群优化 数学 人工智能 约束逻辑程序设计 物理 几何学 控制(管理) 大地测量学 约束满足 量子力学 概率逻辑 地理
作者
Bishwajit Dey,Saurav Raj,Sheila Mahapatra,Fausto Pedro Garcı́a Márquez
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107574-107574 被引量:3
标识
DOI:10.1016/j.engappai.2023.107574
摘要

This paper proposes a novel hybrid algorithm which is mathematically modelled by amalgamating the superior features of recently developed Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA), and Crow Search Algorithm (CSA). Researchers have already implemented the aforementioned three algorithms and obtained superior quality results for solving diverse optimization problems. The novel hybrid Variegated GWO Algorithm (VGWO) developed in this proposed research work is initially realized and validated for solving IEEE CEC-C06 2019 benchmark functions. Thereafter, the proposed VGWO is utilized as an optimization tool to solve three emerging and complex power system optimization problems which includes energy management of microgrid systems operated in both islanded and grid-connected mode, dynamic economic emission dispatch and reactive power planning (RPP) problem. A comparative analysis of the proposed VGWO approach with other established metaheuristics is undertaken for each optimization problem. Numerical results show that the novel hybrid VGWO algorithm outperformed an ample number of optimization techniques in providing better quality solutions. The proposed hybrid algorithm yielded a 36.93% reduction in active power loss and 36.80% reduction in operating cost with respect to base case condition for RPP problem. Likewise while solving microgrid energy management problems 9–30% savings was realized in the generation cost compared to the ones mentioned in literature. The capability of handling many complex constraints within a minimum amount of computational time to provide consistently best solutions prioritize the proposed hybrid algorithm among its kinds. Statistical analysis validates the authenticity and viability of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助香山叶正红采纳,获得20
刚刚
seer发布了新的文献求助10
1秒前
1秒前
夏紊完成签到 ,获得积分10
3秒前
自信板栗发布了新的文献求助10
3秒前
zhu发布了新的文献求助30
3秒前
小燕子发布了新的文献求助10
5秒前
6秒前
好事成双完成签到,获得积分10
6秒前
Ava应助科研采纳,获得10
7秒前
soar发布了新的文献求助10
9秒前
9秒前
shuaiqidewang完成签到 ,获得积分10
10秒前
CAOHOU应助美好斓采纳,获得10
11秒前
小花排草应助美好斓采纳,获得30
11秒前
七月流火应助美好斓采纳,获得30
11秒前
忧郁绣连应助美好斓采纳,获得10
11秒前
晚风落日的糖应助美好斓采纳,获得20
11秒前
tyq完成签到,获得积分20
12秒前
HansStone完成签到,获得积分10
14秒前
16秒前
解语花发布了新的文献求助10
18秒前
21秒前
三泥完成签到,获得积分10
21秒前
Ava应助言言言言采纳,获得10
21秒前
22秒前
科研通AI2S应助小燕子采纳,获得30
22秒前
共享精神应助小燕子采纳,获得10
22秒前
不安青牛应助Dr_Zhan采纳,获得10
23秒前
科研通AI5应助yuanyuan采纳,获得10
24秒前
咯咯咯发布了新的文献求助30
26秒前
Chen完成签到 ,获得积分10
27秒前
言言言言应助文件撤销了驳回
27秒前
小燕子完成签到,获得积分10
31秒前
完美世界应助LL采纳,获得10
35秒前
gaoyan关注了科研通微信公众号
36秒前
36秒前
AXEDW完成签到 ,获得积分10
36秒前
lj发布了新的文献求助10
36秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4340431
求助须知:如何正确求助?哪些是违规求助? 3848868
关于积分的说明 12019076
捐赠科研通 3490057
什么是DOI,文献DOI怎么找? 1915412
邀请新用户注册赠送积分活动 958388
科研通“疑难数据库(出版商)”最低求助积分说明 858548