Mamba: Linear-Time Sequence Modeling with Selective State Spaces

计算机科学 变压器 推论 安全性令牌 人工智能 计算机工程 理论计算机科学 工程类 计算机安全 电压 电气工程
作者
Albert Gu,Tri Dao
出处
期刊:Cornell University - arXiv 被引量:438
标识
DOI:10.48550/arxiv.2312.00752
摘要

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尼克拉倒完成签到,获得积分10
刚刚
超然度陈完成签到,获得积分10
1秒前
LEO完成签到,获得积分10
1秒前
CodeCraft应助蛋挞采纳,获得10
1秒前
踏雪飞鸿完成签到,获得积分10
2秒前
专心搞学术完成签到,获得积分20
2秒前
2秒前
斯文的傲珊完成签到,获得积分10
3秒前
zm发布了新的文献求助10
3秒前
靓丽的采白完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
aLIgn完成签到,获得积分10
5秒前
我要吃挂面完成签到,获得积分10
5秒前
精明凡双应助子初采纳,获得10
7秒前
7秒前
lasfjas完成签到,获得积分10
7秒前
Felix0917完成签到,获得积分10
7秒前
hero7发布了新的文献求助10
7秒前
水尽云生处完成签到,获得积分10
8秒前
漂亮的向日葵完成签到 ,获得积分10
8秒前
科目三应助贾晓丽采纳,获得10
8秒前
顾矜应助Moses采纳,获得10
8秒前
zzzz完成签到 ,获得积分10
9秒前
香辣脆皮坤完成签到,获得积分10
10秒前
YU发布了新的文献求助10
10秒前
11秒前
Ai完成签到,获得积分10
11秒前
yzbbb发布了新的文献求助10
11秒前
今后应助to高坚果采纳,获得10
11秒前
zcl应助大气的雁山采纳,获得20
11秒前
包容的映天完成签到 ,获得积分10
12秒前
小蘑菇应助林慕然2023采纳,获得10
12秒前
12秒前
raorao发布了新的文献求助10
12秒前
有我ID随机吗完成签到,获得积分10
12秒前
12秒前
亮仔应助LCL采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754999
求助须知:如何正确求助?哪些是违规求助? 4098578
关于积分的说明 12680361
捐赠科研通 3812467
什么是DOI,文献DOI怎么找? 2104588
邀请新用户注册赠送积分活动 1129721
关于科研通互助平台的介绍 1007547