Mamba: Linear-Time Sequence Modeling with Selective State Spaces

计算机科学 变压器 推论 安全性令牌 人工智能 计算机工程 理论计算机科学 工程类 计算机安全 电压 电气工程
作者
Albert Gu,Tri Dao
出处
期刊:Cornell University - arXiv 被引量:315
标识
DOI:10.48550/arxiv.2312.00752
摘要

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CA完成签到,获得积分10
1秒前
汉堡包应助KinKrit采纳,获得10
3秒前
云淡风清完成签到 ,获得积分10
6秒前
a啊哈哈哈完成签到,获得积分20
6秒前
平淡的天宇完成签到,获得积分10
8秒前
cfffff完成签到,获得积分10
9秒前
冰魂应助mo采纳,获得10
9秒前
11秒前
starwan发布了新的文献求助30
17秒前
18秒前
黑木完成签到 ,获得积分10
21秒前
23秒前
xi完成签到 ,获得积分10
24秒前
28秒前
一澜透完成签到 ,获得积分10
28秒前
舒适的小高完成签到 ,获得积分20
29秒前
Lucas应助蔡继海采纳,获得10
31秒前
冰魂应助刚刚好采纳,获得30
32秒前
1z6驳回了orixero应助
33秒前
传奇3应助小威采纳,获得10
33秒前
psycho发布了新的文献求助10
35秒前
37秒前
难过的踏歌完成签到,获得积分10
38秒前
白猹发布了新的文献求助10
39秒前
Chaosgreat发布了新的文献求助40
41秒前
蔡继海发布了新的文献求助10
43秒前
体贴的采蓝完成签到 ,获得积分20
44秒前
45秒前
宇宙完成签到,获得积分10
47秒前
NexusExplorer应助积极的明天采纳,获得10
49秒前
宇宙发布了新的文献求助10
50秒前
所所应助科研通管家采纳,获得10
51秒前
情怀应助科研通管家采纳,获得10
51秒前
充电宝应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
慕青应助科研通管家采纳,获得10
51秒前
丘比特应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
我是老大应助科研通管家采纳,获得10
52秒前
Lucas应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976