Research and FPGA Implementation of Convolutional Neural Network Accelerator

卷积神经网络 计算机科学 现场可编程门阵列 MNIST数据库 管道(软件) 硬件加速 高效能源利用 能源消耗 深度学习 嵌入式系统 软件部署 人工智能 计算机硬件 操作系统 电气工程 工程类
作者
Yang Chen,Gaomiao Xu,Lin Chen,Jiabao Gao
标识
DOI:10.1109/prai59366.2023.10332112
摘要

Compared with CPU and GPU, FPGA has high performance, low power consumption, and flexible deployment characteristics. Nowadays, the convolutional neural network (CNN) is updated rapidly, and using the high-level synthesis (HLS) technology to design CNN image recognition accelerators has high efficiency. However, the operating speed and the energy efficiency ratio (EER) of the existing CNN accelerators designed by HLS technology are relatively low. We designed an FPGA-based CNN accelerator using HLS technology, which further improved acceleration efficiency through pipeline optimization, perfect loop, and multiplication split operation. We also realized the custom reusing of intellectual property (IP) cores. The CNN accelerator is verified on an 8-bit LeNet-5 model, and it has a recognition accuracy rate of 97.95% on the MNIST dataset, a single recognition time of 21.5ms, and a platform power consumption of 1.965W. And it reduces the recognition time by at least 5ms compared with other existing works. Its energy efficiency ratio is 23.67(s • W) -1 , which is 2.3 times and 4 times that of ARM and CPU respectively. These reflect the advantages of the FPGA-based CNN image recognition accelerator in that it can be flexibly deployed and has a high energy efficiency ratio under limited deployment power consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮笑柳完成签到,获得积分20
1秒前
cuen发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
科研通AI5应助博修采纳,获得10
4秒前
晓米完成签到 ,获得积分10
7秒前
故酒举报yujx求助涉嫌违规
7秒前
SciGPT应助倩倩倩倩倩采纳,获得10
7秒前
dimple完成签到,获得积分10
8秒前
8秒前
科研通AI5应助刻苦千愁采纳,获得10
8秒前
9秒前
liq发布了新的文献求助10
9秒前
汉堡发布了新的文献求助10
10秒前
英格兰胖头鱼完成签到 ,获得积分10
10秒前
北北贝贝发布了新的文献求助10
10秒前
12秒前
Orange应助可靠盼旋采纳,获得30
13秒前
14秒前
14秒前
科研小虫完成签到,获得积分10
16秒前
MeiyanZou完成签到 ,获得积分10
16秒前
西部森林完成签到,获得积分10
16秒前
16秒前
16秒前
今后应助科研通管家采纳,获得10
17秒前
我是大兴发布了新的文献求助10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
Summertrain应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803515
求助须知:如何正确求助?哪些是违规求助? 3348433
关于积分的说明 10338424
捐赠科研通 3064449
什么是DOI,文献DOI怎么找? 1682577
邀请新用户注册赠送积分活动 808339
科研通“疑难数据库(出版商)”最低求助积分说明 764038